ACIL FM
Dark
Refresh
Current DIR:
/opt/alt/python313/include/python3.13d/internal/mimalloc/mimalloc
/
opt
alt
python313
include
python3.13d
internal
mimalloc
mimalloc
Upload
Zip Selected
Delete Selected
Pilih semua
Nama
Ukuran
Permission
Aksi
atomic.h
16.4 MB
chmod
View
DL
Edit
Rename
Delete
internal.h
35.99 MB
chmod
View
DL
Edit
Rename
Delete
prim.h
14.1 MB
chmod
View
DL
Edit
Rename
Delete
track.h
5.33 MB
chmod
View
DL
Edit
Rename
Delete
types.h
29.19 MB
chmod
View
DL
Edit
Rename
Delete
Edit file: /opt/alt/python313/include/python3.13d/internal/mimalloc/mimalloc/internal.h
/* ---------------------------------------------------------------------------- Copyright (c) 2018-2023, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #pragma once #ifndef MIMALLOC_INTERNAL_H #define MIMALLOC_INTERNAL_H // -------------------------------------------------------------------------- // This file contains the interal API's of mimalloc and various utility // functions and macros. // -------------------------------------------------------------------------- #include "types.h" #include "track.h" #if (MI_DEBUG>0) #define mi_trace_message(...) _mi_trace_message(__VA_ARGS__) #else #define mi_trace_message(...) #endif #if defined(__EMSCRIPTEN__) && !defined(__wasi__) #define __wasi__ #endif #if defined(__cplusplus) #define mi_decl_externc extern "C" #else #define mi_decl_externc #endif // pthreads #if !defined(_WIN32) && !defined(__wasi__) #define MI_USE_PTHREADS #include <pthread.h> #endif // "options.c" void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message); void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...); void _mi_warning_message(const char* fmt, ...); void _mi_verbose_message(const char* fmt, ...); void _mi_trace_message(const char* fmt, ...); void _mi_options_init(void); void _mi_error_message(int err, const char* fmt, ...); // random.c void _mi_random_init(mi_random_ctx_t* ctx); void _mi_random_init_weak(mi_random_ctx_t* ctx); void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx); void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx); uintptr_t _mi_random_next(mi_random_ctx_t* ctx); uintptr_t _mi_heap_random_next(mi_heap_t* heap); uintptr_t _mi_os_random_weak(uintptr_t extra_seed); static inline uintptr_t _mi_random_shuffle(uintptr_t x); // init.c extern mi_decl_cache_align mi_stats_t _mi_stats_main; extern mi_decl_cache_align const mi_page_t _mi_page_empty; bool _mi_is_main_thread(void); size_t _mi_current_thread_count(void); bool _mi_preloading(void); // true while the C runtime is not initialized yet mi_threadid_t _mi_thread_id(void) mi_attr_noexcept; mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap void _mi_thread_done(mi_heap_t* heap); void _mi_thread_data_collect(void); void _mi_tld_init(mi_tld_t* tld, mi_heap_t* bheap); // os.c void _mi_os_init(void); // called from process init void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* stats); void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* stats); void _mi_os_free_ex(void* p, size_t size, bool still_committed, mi_memid_t memid, mi_stats_t* stats); size_t _mi_os_page_size(void); size_t _mi_os_good_alloc_size(size_t size); bool _mi_os_has_overcommit(void); bool _mi_os_has_virtual_reserve(void); bool _mi_os_purge(void* p, size_t size, mi_stats_t* stats); bool _mi_os_reset(void* addr, size_t size, mi_stats_t* tld_stats); bool _mi_os_commit(void* p, size_t size, bool* is_zero, mi_stats_t* stats); bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats); bool _mi_os_protect(void* addr, size_t size); bool _mi_os_unprotect(void* addr, size_t size); bool _mi_os_purge(void* p, size_t size, mi_stats_t* stats); bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats); void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* stats); void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* tld_stats); void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size); bool _mi_os_use_large_page(size_t size, size_t alignment); size_t _mi_os_large_page_size(void); void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_secs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid); // arena.c mi_arena_id_t _mi_arena_id_none(void); void _mi_arena_free(void* p, size_t size, size_t still_committed_size, mi_memid_t memid, mi_stats_t* stats); void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld); void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld); bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id); bool _mi_arena_contains(const void* p); void _mi_arena_collect(bool force_purge, mi_stats_t* stats); void _mi_arena_unsafe_destroy_all(mi_stats_t* stats); // "segment-map.c" void _mi_segment_map_allocated_at(const mi_segment_t* segment); void _mi_segment_map_freed_at(const mi_segment_t* segment); // "segment.c" extern mi_abandoned_pool_t _mi_abandoned_default; // global abandoned pool mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld); void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld); void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld); bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld); void _mi_segment_thread_collect(mi_segments_tld_t* tld); bool _mi_abandoned_pool_visit_blocks(mi_abandoned_pool_t* pool, uint8_t page_tag, bool visit_blocks, mi_block_visit_fun* visitor, void* arg); #if MI_HUGE_PAGE_ABANDON void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block); #else void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_block_t* block); #endif uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size); // page start for any page void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld); void _mi_abandoned_await_readers(mi_abandoned_pool_t *pool); void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld); // "page.c" void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept mi_attr_malloc; void _mi_page_retire(mi_page_t* page) mi_attr_noexcept; // free the page if there are no other pages with many free blocks void _mi_page_unfull(mi_page_t* page); void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread... void _mi_heap_delayed_free_all(mi_heap_t* heap); bool _mi_heap_delayed_free_partial(mi_heap_t* heap); void _mi_heap_collect_retired(mi_heap_t* heap, bool force); void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never); bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never); size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append); void _mi_deferred_free(mi_heap_t* heap, bool force); void _mi_page_free_collect(mi_page_t* page,bool force); void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments size_t _mi_bin_size(uint8_t bin); // for stats uint8_t _mi_bin(size_t size); // for stats // "heap.c" void _mi_heap_init_ex(mi_heap_t* heap, mi_tld_t* tld, mi_arena_id_t arena_id, bool no_reclaim, uint8_t tag); void _mi_heap_destroy_pages(mi_heap_t* heap); void _mi_heap_collect_abandon(mi_heap_t* heap); void _mi_heap_set_default_direct(mi_heap_t* heap); bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid); void _mi_heap_unsafe_destroy_all(void); void _mi_heap_area_init(mi_heap_area_t* area, mi_page_t* page); bool _mi_heap_area_visit_blocks(const mi_heap_area_t* area, mi_page_t *page, mi_block_visit_fun* visitor, void* arg); // "stats.c" void _mi_stats_done(mi_stats_t* stats); mi_msecs_t _mi_clock_now(void); mi_msecs_t _mi_clock_end(mi_msecs_t start); mi_msecs_t _mi_clock_start(void); // "alloc.c" void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept; // called from `_mi_malloc_generic` void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept; void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned` void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept; mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p); bool _mi_free_delayed_block(mi_block_t* block); void _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size); // option.c, c primitives char _mi_toupper(char c); int _mi_strnicmp(const char* s, const char* t, size_t n); void _mi_strlcpy(char* dest, const char* src, size_t dest_size); void _mi_strlcat(char* dest, const char* src, size_t dest_size); size_t _mi_strlen(const char* s); size_t _mi_strnlen(const char* s, size_t max_len); #if MI_DEBUG>1 bool _mi_page_is_valid(mi_page_t* page); #endif // ------------------------------------------------------ // Branches // ------------------------------------------------------ #if defined(__GNUC__) || defined(__clang__) #define mi_unlikely(x) (__builtin_expect(!!(x),false)) #define mi_likely(x) (__builtin_expect(!!(x),true)) #elif (defined(__cplusplus) && (__cplusplus >= 202002L)) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L) #define mi_unlikely(x) (x) [[unlikely]] #define mi_likely(x) (x) [[likely]] #else #define mi_unlikely(x) (x) #define mi_likely(x) (x) #endif #ifndef __has_builtin #define __has_builtin(x) 0 #endif /* ----------------------------------------------------------- Error codes passed to `_mi_fatal_error` All are recoverable but EFAULT is a serious error and aborts by default in secure mode. For portability define undefined error codes using common Unix codes: <https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html> ----------------------------------------------------------- */ #include <errno.h> #ifndef EAGAIN // double free #define EAGAIN (11) #endif #ifndef ENOMEM // out of memory #define ENOMEM (12) #endif #ifndef EFAULT // corrupted free-list or meta-data #define EFAULT (14) #endif #ifndef EINVAL // trying to free an invalid pointer #define EINVAL (22) #endif #ifndef EOVERFLOW // count*size overflow #define EOVERFLOW (75) #endif /* ----------------------------------------------------------- Inlined definitions ----------------------------------------------------------- */ #define MI_UNUSED(x) (void)(x) #if (MI_DEBUG>0) #define MI_UNUSED_RELEASE(x) #else #define MI_UNUSED_RELEASE(x) MI_UNUSED(x) #endif #define MI_INIT4(x) x(),x(),x(),x() #define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x) #define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x) #define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x) #define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x) #define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x) #define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x) #include <string.h> // initialize a local variable to zero; use memset as compilers optimize constant sized memset's #define _mi_memzero_var(x) memset(&x,0,sizeof(x)) // Is `x` a power of two? (0 is considered a power of two) static inline bool _mi_is_power_of_two(uintptr_t x) { return ((x & (x - 1)) == 0); } // Is a pointer aligned? static inline bool _mi_is_aligned(void* p, size_t alignment) { mi_assert_internal(alignment != 0); return (((uintptr_t)p % alignment) == 0); } // Align upwards static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) { mi_assert_internal(alignment != 0); uintptr_t mask = alignment - 1; if ((alignment & mask) == 0) { // power of two? return ((sz + mask) & ~mask); } else { return (((sz + mask)/alignment)*alignment); } } // Align downwards static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) { mi_assert_internal(alignment != 0); uintptr_t mask = alignment - 1; if ((alignment & mask) == 0) { // power of two? return (sz & ~mask); } else { return ((sz / alignment) * alignment); } } // Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`. static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) { mi_assert_internal(divider != 0); return (divider == 0 ? size : ((size + divider - 1) / divider)); } // Is memory zero initialized? static inline bool mi_mem_is_zero(const void* p, size_t size) { for (size_t i = 0; i < size; i++) { if (((uint8_t*)p)[i] != 0) return false; } return true; } // Align a byte size to a size in _machine words_, // i.e. byte size == `wsize*sizeof(void*)`. static inline size_t _mi_wsize_from_size(size_t size) { mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t)); return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t); } // Overflow detecting multiply #if __has_builtin(__builtin_umul_overflow) || (defined(__GNUC__) && (__GNUC__ >= 5)) #include <limits.h> // UINT_MAX, ULONG_MAX #if defined(_CLOCK_T) // for Illumos #undef _CLOCK_T #endif static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { #if (SIZE_MAX == ULONG_MAX) return __builtin_umull_overflow(count, size, (unsigned long *)total); #elif (SIZE_MAX == UINT_MAX) return __builtin_umul_overflow(count, size, (unsigned int *)total); #else return __builtin_umulll_overflow(count, size, (unsigned long long *)total); #endif } #else /* __builtin_umul_overflow is unavailable */ static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { #define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX) *total = count * size; // note: gcc/clang optimize this to directly check the overflow flag return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW) && size > 0 && (SIZE_MAX / size) < count); } #endif // Safe multiply `count*size` into `total`; return `true` on overflow. static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) { if (count==1) { // quick check for the case where count is one (common for C++ allocators) *total = size; return false; } else if mi_unlikely(mi_mul_overflow(count, size, total)) { #if MI_DEBUG > 0 _mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size); #endif *total = SIZE_MAX; return true; } else return false; } /*---------------------------------------------------------------------------------------- Heap functions ------------------------------------------------------------------------------------------- */ extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap static inline bool mi_heap_is_backing(const mi_heap_t* heap) { return (heap->tld->heap_backing == heap); } static inline bool mi_heap_is_initialized(mi_heap_t* heap) { mi_assert_internal(heap != NULL); return (heap != &_mi_heap_empty); } static inline uintptr_t _mi_ptr_cookie(const void* p) { extern mi_heap_t _mi_heap_main; mi_assert_internal(_mi_heap_main.cookie != 0); return ((uintptr_t)p ^ _mi_heap_main.cookie); } /* ----------------------------------------------------------- Pages ----------------------------------------------------------- */ static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) { mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE)); const size_t idx = _mi_wsize_from_size(size); mi_assert_internal(idx < MI_PAGES_DIRECT); return heap->pages_free_direct[idx]; } // Segment that contains the pointer // Large aligned blocks may be aligned at N*MI_SEGMENT_SIZE (inside a huge segment > MI_SEGMENT_SIZE), // and we need align "down" to the segment info which is `MI_SEGMENT_SIZE` bytes before it; // therefore we align one byte before `p`. static inline mi_segment_t* _mi_ptr_segment(const void* p) { mi_assert_internal(p != NULL); return (mi_segment_t*)(((uintptr_t)p - 1) & ~MI_SEGMENT_MASK); } static inline mi_page_t* mi_slice_to_page(mi_slice_t* s) { mi_assert_internal(s->slice_offset== 0 && s->slice_count > 0); return (mi_page_t*)(s); } static inline mi_slice_t* mi_page_to_slice(mi_page_t* p) { mi_assert_internal(p->slice_offset== 0 && p->slice_count > 0); return (mi_slice_t*)(p); } // Segment belonging to a page static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) { mi_segment_t* segment = _mi_ptr_segment(page); mi_assert_internal(segment == NULL || ((mi_slice_t*)page >= segment->slices && (mi_slice_t*)page < segment->slices + segment->slice_entries)); return segment; } static inline mi_slice_t* mi_slice_first(const mi_slice_t* slice) { mi_slice_t* start = (mi_slice_t*)((uint8_t*)slice - slice->slice_offset); mi_assert_internal(start >= _mi_ptr_segment(slice)->slices); mi_assert_internal(start->slice_offset == 0); mi_assert_internal(start + start->slice_count > slice); return start; } // Get the page containing the pointer (performance critical as it is called in mi_free) static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) { mi_assert_internal(p > (void*)segment); ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment; mi_assert_internal(diff > 0 && diff <= (ptrdiff_t)MI_SEGMENT_SIZE); size_t idx = (size_t)diff >> MI_SEGMENT_SLICE_SHIFT; mi_assert_internal(idx <= segment->slice_entries); mi_slice_t* slice0 = (mi_slice_t*)&segment->slices[idx]; mi_slice_t* slice = mi_slice_first(slice0); // adjust to the block that holds the page data mi_assert_internal(slice->slice_offset == 0); mi_assert_internal(slice >= segment->slices && slice < segment->slices + segment->slice_entries); return mi_slice_to_page(slice); } // Quick page start for initialized pages static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) { return _mi_segment_page_start(segment, page, page_size); } // Get the page containing the pointer static inline mi_page_t* _mi_ptr_page(void* p) { return _mi_segment_page_of(_mi_ptr_segment(p), p); } // Get the block size of a page (special case for huge objects) static inline size_t mi_page_block_size(const mi_page_t* page) { const size_t bsize = page->xblock_size; mi_assert_internal(bsize > 0); if mi_likely(bsize < MI_HUGE_BLOCK_SIZE) { return bsize; } else { size_t psize; _mi_segment_page_start(_mi_page_segment(page), page, &psize); return psize; } } static inline bool mi_page_is_huge(const mi_page_t* page) { return (_mi_page_segment(page)->kind == MI_SEGMENT_HUGE); } // Get the usable block size of a page without fixed padding. // This may still include internal padding due to alignment and rounding up size classes. static inline size_t mi_page_usable_block_size(const mi_page_t* page) { return mi_page_block_size(page) - MI_PADDING_SIZE; } // size of a segment static inline size_t mi_segment_size(mi_segment_t* segment) { return segment->segment_slices * MI_SEGMENT_SLICE_SIZE; } static inline uint8_t* mi_segment_end(mi_segment_t* segment) { return (uint8_t*)segment + mi_segment_size(segment); } // Thread free access static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) { return (mi_block_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & ~3); } static inline mi_delayed_t mi_page_thread_free_flag(const mi_page_t* page) { return (mi_delayed_t)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & 3); } // Heap access static inline mi_heap_t* mi_page_heap(const mi_page_t* page) { return (mi_heap_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xheap)); } static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) { mi_assert_internal(mi_page_thread_free_flag(page) != MI_DELAYED_FREEING); mi_atomic_store_release(&page->xheap,(uintptr_t)heap); } // Thread free flag helpers static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) { return (mi_block_t*)(tf & ~0x03); } static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) { return (mi_delayed_t)(tf & 0x03); } static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) { return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed); } static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) { return mi_tf_make(mi_tf_block(tf),delayed); } static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) { return mi_tf_make(block, mi_tf_delayed(tf)); } // are all blocks in a page freed? // note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`. static inline bool mi_page_all_free(const mi_page_t* page) { mi_assert_internal(page != NULL); return (page->used == 0); } // are there any available blocks? static inline bool mi_page_has_any_available(const mi_page_t* page) { mi_assert_internal(page != NULL && page->reserved > 0); return (page->used < page->reserved || (mi_page_thread_free(page) != NULL)); } // are there immediately available blocks, i.e. blocks available on the free list. static inline bool mi_page_immediate_available(const mi_page_t* page) { mi_assert_internal(page != NULL); return (page->free != NULL); } // is more than 7/8th of a page in use? static inline bool mi_page_mostly_used(const mi_page_t* page) { if (page==NULL) return true; uint16_t frac = page->reserved / 8U; return (page->reserved - page->used <= frac); } static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) { return &((mi_heap_t*)heap)->pages[_mi_bin(size)]; } //----------------------------------------------------------- // Page flags //----------------------------------------------------------- static inline bool mi_page_is_in_full(const mi_page_t* page) { return page->flags.x.in_full; } static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) { page->flags.x.in_full = in_full; } static inline bool mi_page_has_aligned(const mi_page_t* page) { return page->flags.x.has_aligned; } static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) { page->flags.x.has_aligned = has_aligned; } /* ------------------------------------------------------------------- Encoding/Decoding the free list next pointers This is to protect against buffer overflow exploits where the free list is mutated. Many hardened allocators xor the next pointer `p` with a secret key `k1`, as `p^k1`. This prevents overwriting with known values but might be still too weak: if the attacker can guess the pointer `p` this can reveal `k1` (since `p^k1^p == k1`). Moreover, if multiple blocks can be read as well, the attacker can xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot about the pointers (and subsequently `k1`). Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`. Since these operations are not associative, the above approaches do not work so well any more even if the `p` can be guesstimated. For example, for the read case we can subtract two entries to discard the `+k1` term, but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best. We include the left-rotation since xor and addition are otherwise linear in the lowest bit. Finally, both keys are unique per page which reduces the re-use of keys by a large factor. We also pass a separate `null` value to be used as `NULL` or otherwise `(k2<<<k1)+k1` would appear (too) often as a sentinel value. ------------------------------------------------------------------- */ static inline bool mi_is_in_same_segment(const void* p, const void* q) { return (_mi_ptr_segment(p) == _mi_ptr_segment(q)); } static inline bool mi_is_in_same_page(const void* p, const void* q) { mi_segment_t* segment = _mi_ptr_segment(p); if (_mi_ptr_segment(q) != segment) return false; // assume q may be invalid // return (_mi_segment_page_of(segment, p) == _mi_segment_page_of(segment, q)); mi_page_t* page = _mi_segment_page_of(segment, p); size_t psize; uint8_t* start = _mi_segment_page_start(segment, page, &psize); return (start <= (uint8_t*)q && (uint8_t*)q < start + psize); } static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) { shift %= MI_INTPTR_BITS; return (shift==0 ? x : ((x << shift) | (x >> (MI_INTPTR_BITS - shift)))); } static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) { shift %= MI_INTPTR_BITS; return (shift==0 ? x : ((x >> shift) | (x << (MI_INTPTR_BITS - shift)))); } static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) { void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]); return (p==null ? NULL : p); } static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) { uintptr_t x = (uintptr_t)(p==NULL ? null : p); return mi_rotl(x ^ keys[1], keys[0]) + keys[0]; } static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) { mi_track_mem_defined(block,sizeof(mi_block_t)); mi_block_t* next; #ifdef MI_ENCODE_FREELIST next = (mi_block_t*)mi_ptr_decode(null, mi_atomic_load_relaxed((_Atomic(mi_encoded_t)*)&block->next), keys); #else MI_UNUSED(keys); MI_UNUSED(null); next = (mi_block_t*)mi_atomic_load_relaxed((_Atomic(mi_encoded_t)*)&block->next); #endif mi_track_mem_noaccess(block,sizeof(mi_block_t)); return next; } static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) { mi_track_mem_undefined(block,sizeof(mi_block_t)); #ifdef MI_ENCODE_FREELIST mi_atomic_store_relaxed(&block->next, mi_ptr_encode(null, next, keys)); #else MI_UNUSED(keys); MI_UNUSED(null); mi_atomic_store_relaxed(&block->next, (mi_encoded_t)next); #endif mi_track_mem_noaccess(block,sizeof(mi_block_t)); } static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) { #ifdef MI_ENCODE_FREELIST mi_block_t* next = mi_block_nextx(page,block,page->keys); // check for free list corruption: is `next` at least in the same page? // TODO: check if `next` is `page->block_size` aligned? if mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next)) { _mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next); next = NULL; } return next; #else MI_UNUSED(page); return mi_block_nextx(page,block,NULL); #endif } static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) { #ifdef MI_ENCODE_FREELIST mi_block_set_nextx(page,block,next, page->keys); #else MI_UNUSED(page); mi_block_set_nextx(page,block,next,NULL); #endif } // ------------------------------------------------------------------- // commit mask // ------------------------------------------------------------------- static inline void mi_commit_mask_create_empty(mi_commit_mask_t* cm) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { cm->mask[i] = 0; } } static inline void mi_commit_mask_create_full(mi_commit_mask_t* cm) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { cm->mask[i] = ~((size_t)0); } } static inline bool mi_commit_mask_is_empty(const mi_commit_mask_t* cm) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { if (cm->mask[i] != 0) return false; } return true; } static inline bool mi_commit_mask_is_full(const mi_commit_mask_t* cm) { for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) { if (cm->mask[i] != ~((size_t)0)) return false; } return true; } // defined in `segment.c`: size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total); size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx); #define mi_commit_mask_foreach(cm,idx,count) \ idx = 0; \ while ((count = _mi_commit_mask_next_run(cm,&idx)) > 0) { #define mi_commit_mask_foreach_end() \ idx += count; \ } /* ----------------------------------------------------------- memory id's ----------------------------------------------------------- */ static inline mi_memid_t _mi_memid_create(mi_memkind_t memkind) { mi_memid_t memid; _mi_memzero_var(memid); memid.memkind = memkind; return memid; } static inline mi_memid_t _mi_memid_none(void) { return _mi_memid_create(MI_MEM_NONE); } static inline mi_memid_t _mi_memid_create_os(bool committed, bool is_zero, bool is_large) { mi_memid_t memid = _mi_memid_create(MI_MEM_OS); memid.initially_committed = committed; memid.initially_zero = is_zero; memid.is_pinned = is_large; return memid; } // ------------------------------------------------------------------- // Fast "random" shuffle // ------------------------------------------------------------------- static inline uintptr_t _mi_random_shuffle(uintptr_t x) { if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros #if (MI_INTPTR_SIZE==8) // by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c> x ^= x >> 30; x *= 0xbf58476d1ce4e5b9UL; x ^= x >> 27; x *= 0x94d049bb133111ebUL; x ^= x >> 31; #elif (MI_INTPTR_SIZE==4) // by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/> x ^= x >> 16; x *= 0x7feb352dUL; x ^= x >> 15; x *= 0x846ca68bUL; x ^= x >> 16; #endif return x; } // ------------------------------------------------------------------- // Optimize numa node access for the common case (= one node) // ------------------------------------------------------------------- int _mi_os_numa_node_get(mi_os_tld_t* tld); size_t _mi_os_numa_node_count_get(void); extern _Atomic(size_t) _mi_numa_node_count; static inline int _mi_os_numa_node(mi_os_tld_t* tld) { if mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1) { return 0; } else return _mi_os_numa_node_get(tld); } static inline size_t _mi_os_numa_node_count(void) { const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count); if mi_likely(count > 0) { return count; } else return _mi_os_numa_node_count_get(); } // ----------------------------------------------------------------------- // Count bits: trailing or leading zeros (with MI_INTPTR_BITS on all zero) // ----------------------------------------------------------------------- #if defined(__GNUC__) #include <limits.h> // LONG_MAX #define MI_HAVE_FAST_BITSCAN static inline size_t mi_clz(uintptr_t x) { if (x==0) return MI_INTPTR_BITS; #if (INTPTR_MAX == LONG_MAX) return __builtin_clzl(x); #else return __builtin_clzll(x); #endif } static inline size_t mi_ctz(uintptr_t x) { if (x==0) return MI_INTPTR_BITS; #if (INTPTR_MAX == LONG_MAX) return __builtin_ctzl(x); #else return __builtin_ctzll(x); #endif } #elif defined(_MSC_VER) #include <limits.h> // LONG_MAX #include <intrin.h> // BitScanReverse64 #define MI_HAVE_FAST_BITSCAN static inline size_t mi_clz(uintptr_t x) { if (x==0) return MI_INTPTR_BITS; unsigned long idx; #if (INTPTR_MAX == LONG_MAX) _BitScanReverse(&idx, x); #else _BitScanReverse64(&idx, x); #endif return ((MI_INTPTR_BITS - 1) - idx); } static inline size_t mi_ctz(uintptr_t x) { if (x==0) return MI_INTPTR_BITS; unsigned long idx; #if (INTPTR_MAX == LONG_MAX) _BitScanForward(&idx, x); #else _BitScanForward64(&idx, x); #endif return idx; } #else static inline size_t mi_ctz32(uint32_t x) { // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf> static const unsigned char debruijn[32] = { 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 }; if (x==0) return 32; return debruijn[((x & -(int32_t)x) * 0x077CB531UL) >> 27]; } static inline size_t mi_clz32(uint32_t x) { // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf> static const uint8_t debruijn[32] = { 31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1, 23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0 }; if (x==0) return 32; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return debruijn[(uint32_t)(x * 0x07C4ACDDUL) >> 27]; } static inline size_t mi_clz(uintptr_t x) { if (x==0) return MI_INTPTR_BITS; #if (MI_INTPTR_BITS <= 32) return mi_clz32((uint32_t)x); #else size_t count = mi_clz32((uint32_t)(x >> 32)); if (count < 32) return count; return (32 + mi_clz32((uint32_t)x)); #endif } static inline size_t mi_ctz(uintptr_t x) { if (x==0) return MI_INTPTR_BITS; #if (MI_INTPTR_BITS <= 32) return mi_ctz32((uint32_t)x); #else size_t count = mi_ctz32((uint32_t)x); if (count < 32) return count; return (32 + mi_ctz32((uint32_t)(x>>32))); #endif } #endif // "bit scan reverse": Return index of the highest bit (or MI_INTPTR_BITS if `x` is zero) static inline size_t mi_bsr(uintptr_t x) { return (x==0 ? MI_INTPTR_BITS : MI_INTPTR_BITS - 1 - mi_clz(x)); } // --------------------------------------------------------------------------------- // Provide our own `_mi_memcpy` for potential performance optimizations. // // For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if // we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support // (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253. // --------------------------------------------------------------------------------- #if !MI_TRACK_ENABLED && defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64)) #include <intrin.h> extern bool _mi_cpu_has_fsrm; static inline void _mi_memcpy(void* dst, const void* src, size_t n) { if (_mi_cpu_has_fsrm) { __movsb((unsigned char*)dst, (const unsigned char*)src, n); } else { memcpy(dst, src, n); } } static inline void _mi_memzero(void* dst, size_t n) { if (_mi_cpu_has_fsrm) { __stosb((unsigned char*)dst, 0, n); } else { memset(dst, 0, n); } } #else static inline void _mi_memcpy(void* dst, const void* src, size_t n) { memcpy(dst, src, n); } static inline void _mi_memzero(void* dst, size_t n) { memset(dst, 0, n); } #endif // ------------------------------------------------------------------------------- // The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned // This is used for example in `mi_realloc`. // ------------------------------------------------------------------------------- #if (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__) // On GCC/CLang we provide a hint that the pointers are word aligned. static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) { mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0)); void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE); const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE); _mi_memcpy(adst, asrc, n); } static inline void _mi_memzero_aligned(void* dst, size_t n) { mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0); void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE); _mi_memzero(adst, n); } #else // Default fallback on `_mi_memcpy` static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) { mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0)); _mi_memcpy(dst, src, n); } static inline void _mi_memzero_aligned(void* dst, size_t n) { mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0); _mi_memzero(dst, n); } #endif #endif
Simpan
Batal
Isi Zip:
Unzip
Create
Buat Folder
Buat File
Terminal / Execute
Run
Chmod Bulk
All File
All Folder
All File dan Folder
Apply