ACIL FM
Dark
Refresh
Current DIR:
/opt/alt/python313/include/python3.13/internal/mimalloc/mimalloc
/
opt
alt
python313
include
python3.13
internal
mimalloc
mimalloc
Upload
Zip Selected
Delete Selected
Pilih semua
Nama
Ukuran
Permission
Aksi
atomic.h
16.4 MB
chmod
View
DL
Edit
Rename
Delete
internal.h
35.99 MB
chmod
View
DL
Edit
Rename
Delete
prim.h
14.1 MB
chmod
View
DL
Edit
Rename
Delete
track.h
5.33 MB
chmod
View
DL
Edit
Rename
Delete
types.h
29.19 MB
chmod
View
DL
Edit
Rename
Delete
Edit file: /opt/alt/python313/include/python3.13/internal/mimalloc/mimalloc/types.h
/* ---------------------------------------------------------------------------- Copyright (c) 2018-2023, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #pragma once #ifndef MIMALLOC_TYPES_H #define MIMALLOC_TYPES_H // -------------------------------------------------------------------------- // This file contains the main type definitions for mimalloc: // mi_heap_t : all data for a thread-local heap, contains // lists of all managed heap pages. // mi_segment_t : a larger chunk of memory (32GiB) from where pages // are allocated. // mi_page_t : a mimalloc page (usually 64KiB or 512KiB) from // where objects are allocated. // -------------------------------------------------------------------------- #include <stddef.h> // ptrdiff_t #include <stdint.h> // uintptr_t, uint16_t, etc #include "atomic.h" // _Atomic #ifdef _MSC_VER #pragma warning(disable:4214) // bitfield is not int #endif // Minimal alignment necessary. On most platforms 16 bytes are needed // due to SSE registers for example. This must be at least `sizeof(void*)` #ifndef MI_MAX_ALIGN_SIZE #define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t) #endif #define MI_CACHE_LINE 64 #if defined(_MSC_VER) #pragma warning(disable:4127) // suppress constant conditional warning (due to MI_SECURE paths) #pragma warning(disable:26812) // unscoped enum warning #define mi_decl_noinline __declspec(noinline) #define mi_decl_thread __declspec(thread) #define mi_decl_cache_align __declspec(align(MI_CACHE_LINE)) #elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc #define mi_decl_noinline __attribute__((noinline)) #define mi_decl_thread __thread #define mi_decl_cache_align __attribute__((aligned(MI_CACHE_LINE))) #else #define mi_decl_noinline #define mi_decl_thread __thread // hope for the best :-) #define mi_decl_cache_align #endif // ------------------------------------------------------ // Variants // ------------------------------------------------------ // Define NDEBUG in the release version to disable assertions. // #define NDEBUG // Define MI_TRACK_<tool> to enable tracking support // #define MI_TRACK_VALGRIND 1 // #define MI_TRACK_ASAN 1 // #define MI_TRACK_ETW 1 // Define MI_STAT as 1 to maintain statistics; set it to 2 to have detailed statistics (but costs some performance). // #define MI_STAT 1 // Define MI_SECURE to enable security mitigations // #define MI_SECURE 1 // guard page around metadata // #define MI_SECURE 2 // guard page around each mimalloc page // #define MI_SECURE 3 // encode free lists (detect corrupted free list (buffer overflow), and invalid pointer free) // #define MI_SECURE 4 // checks for double free. (may be more expensive) #if !defined(MI_SECURE) #define MI_SECURE 0 #endif // Define MI_DEBUG for debug mode // #define MI_DEBUG 1 // basic assertion checks and statistics, check double free, corrupted free list, and invalid pointer free. // #define MI_DEBUG 2 // + internal assertion checks // #define MI_DEBUG 3 // + extensive internal invariant checking (cmake -DMI_DEBUG_FULL=ON) #if !defined(MI_DEBUG) #if !defined(NDEBUG) || defined(_DEBUG) #define MI_DEBUG 2 #else #define MI_DEBUG 0 #endif #endif // Reserve extra padding at the end of each block to be more resilient against heap block overflows. // The padding can detect buffer overflow on free. #if !defined(MI_PADDING) && (MI_SECURE>=3 || MI_DEBUG>=1 || (MI_TRACK_VALGRIND || MI_TRACK_ASAN || MI_TRACK_ETW)) #define MI_PADDING 1 #endif // Check padding bytes; allows byte-precise buffer overflow detection #if !defined(MI_PADDING_CHECK) && MI_PADDING && (MI_SECURE>=3 || MI_DEBUG>=1) #define MI_PADDING_CHECK 1 #endif // Encoded free lists allow detection of corrupted free lists // and can detect buffer overflows, modify after free, and double `free`s. #if (MI_SECURE>=3 || MI_DEBUG>=1) #define MI_ENCODE_FREELIST 1 #endif // We used to abandon huge pages but to eagerly deallocate if freed from another thread, // but that makes it not possible to visit them during a heap walk or include them in a // `mi_heap_destroy`. We therefore instead reset/decommit the huge blocks if freed from // another thread so most memory is available until it gets properly freed by the owning thread. // #define MI_HUGE_PAGE_ABANDON 1 // ------------------------------------------------------ // Platform specific values // ------------------------------------------------------ // ------------------------------------------------------ // Size of a pointer. // We assume that `sizeof(void*)==sizeof(intptr_t)` // and it holds for all platforms we know of. // // However, the C standard only requires that: // p == (void*)((intptr_t)p)) // but we also need: // i == (intptr_t)((void*)i) // or otherwise one might define an intptr_t type that is larger than a pointer... // ------------------------------------------------------ #if INTPTR_MAX > INT64_MAX # define MI_INTPTR_SHIFT (4) // assume 128-bit (as on arm CHERI for example) #elif INTPTR_MAX == INT64_MAX # define MI_INTPTR_SHIFT (3) #elif INTPTR_MAX == INT32_MAX # define MI_INTPTR_SHIFT (2) #else #error platform pointers must be 32, 64, or 128 bits #endif #if SIZE_MAX == UINT64_MAX # define MI_SIZE_SHIFT (3) typedef int64_t mi_ssize_t; #elif SIZE_MAX == UINT32_MAX # define MI_SIZE_SHIFT (2) typedef int32_t mi_ssize_t; #else #error platform objects must be 32 or 64 bits #endif #if (SIZE_MAX/2) > LONG_MAX # define MI_ZU(x) x##ULL # define MI_ZI(x) x##LL #else # define MI_ZU(x) x##UL # define MI_ZI(x) x##L #endif #define MI_INTPTR_SIZE (1<<MI_INTPTR_SHIFT) #define MI_INTPTR_BITS (MI_INTPTR_SIZE*8) #define MI_SIZE_SIZE (1<<MI_SIZE_SHIFT) #define MI_SIZE_BITS (MI_SIZE_SIZE*8) #define MI_KiB (MI_ZU(1024)) #define MI_MiB (MI_KiB*MI_KiB) #define MI_GiB (MI_MiB*MI_KiB) // ------------------------------------------------------ // Main internal data-structures // ------------------------------------------------------ // Main tuning parameters for segment and page sizes // Sizes for 64-bit (usually divide by two for 32-bit) #define MI_SEGMENT_SLICE_SHIFT (13 + MI_INTPTR_SHIFT) // 64KiB (32KiB on 32-bit) #if MI_INTPTR_SIZE > 4 #define MI_SEGMENT_SHIFT ( 9 + MI_SEGMENT_SLICE_SHIFT) // 32MiB #else #define MI_SEGMENT_SHIFT ( 7 + MI_SEGMENT_SLICE_SHIFT) // 4MiB on 32-bit #endif #define MI_SMALL_PAGE_SHIFT (MI_SEGMENT_SLICE_SHIFT) // 64KiB #define MI_MEDIUM_PAGE_SHIFT ( 3 + MI_SMALL_PAGE_SHIFT) // 512KiB // Derived constants #define MI_SEGMENT_SIZE (MI_ZU(1)<<MI_SEGMENT_SHIFT) #define MI_SEGMENT_ALIGN MI_SEGMENT_SIZE #define MI_SEGMENT_MASK ((uintptr_t)(MI_SEGMENT_ALIGN - 1)) #define MI_SEGMENT_SLICE_SIZE (MI_ZU(1)<< MI_SEGMENT_SLICE_SHIFT) #define MI_SLICES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_SEGMENT_SLICE_SIZE) // 1024 #define MI_SMALL_PAGE_SIZE (MI_ZU(1)<<MI_SMALL_PAGE_SHIFT) #define MI_MEDIUM_PAGE_SIZE (MI_ZU(1)<<MI_MEDIUM_PAGE_SHIFT) #define MI_SMALL_OBJ_SIZE_MAX (MI_SMALL_PAGE_SIZE/4) // 8KiB on 64-bit #define MI_MEDIUM_OBJ_SIZE_MAX (MI_MEDIUM_PAGE_SIZE/4) // 128KiB on 64-bit #define MI_MEDIUM_OBJ_WSIZE_MAX (MI_MEDIUM_OBJ_SIZE_MAX/MI_INTPTR_SIZE) #define MI_LARGE_OBJ_SIZE_MAX (MI_SEGMENT_SIZE/2) // 32MiB on 64-bit #define MI_LARGE_OBJ_WSIZE_MAX (MI_LARGE_OBJ_SIZE_MAX/MI_INTPTR_SIZE) // Maximum number of size classes. (spaced exponentially in 12.5% increments) #define MI_BIN_HUGE (73U) #if (MI_MEDIUM_OBJ_WSIZE_MAX >= 655360) #error "mimalloc internal: define more bins" #endif // Maximum slice offset (15) #define MI_MAX_SLICE_OFFSET ((MI_ALIGNMENT_MAX / MI_SEGMENT_SLICE_SIZE) - 1) // Used as a special value to encode block sizes in 32 bits. #define MI_HUGE_BLOCK_SIZE ((uint32_t)(2*MI_GiB)) // blocks up to this size are always allocated aligned #define MI_MAX_ALIGN_GUARANTEE (8*MI_MAX_ALIGN_SIZE) // Alignments over MI_ALIGNMENT_MAX are allocated in dedicated huge page segments #define MI_ALIGNMENT_MAX (MI_SEGMENT_SIZE >> 1) // ------------------------------------------------------ // Mimalloc pages contain allocated blocks // ------------------------------------------------------ // The free lists use encoded next fields // (Only actually encodes when MI_ENCODED_FREELIST is defined.) typedef uintptr_t mi_encoded_t; // thread id's typedef size_t mi_threadid_t; // free lists contain blocks typedef struct mi_block_s { _Atomic(mi_encoded_t) next; } mi_block_t; // The delayed flags are used for efficient multi-threaded free-ing typedef enum mi_delayed_e { MI_USE_DELAYED_FREE = 0, // push on the owning heap thread delayed list MI_DELAYED_FREEING = 1, // temporary: another thread is accessing the owning heap MI_NO_DELAYED_FREE = 2, // optimize: push on page local thread free queue if another block is already in the heap thread delayed free list MI_NEVER_DELAYED_FREE = 3 // sticky, only resets on page reclaim } mi_delayed_t; // The `in_full` and `has_aligned` page flags are put in a union to efficiently // test if both are false (`full_aligned == 0`) in the `mi_free` routine. #if !MI_TSAN typedef union mi_page_flags_s { uint8_t full_aligned; struct { uint8_t in_full : 1; uint8_t has_aligned : 1; } x; } mi_page_flags_t; #else // under thread sanitizer, use a byte for each flag to suppress warning, issue #130 typedef union mi_page_flags_s { uint16_t full_aligned; struct { uint8_t in_full; uint8_t has_aligned; } x; } mi_page_flags_t; #endif // Thread free list. // We use the bottom 2 bits of the pointer for mi_delayed_t flags typedef uintptr_t mi_thread_free_t; // A page contains blocks of one specific size (`block_size`). // Each page has three list of free blocks: // `free` for blocks that can be allocated, // `local_free` for freed blocks that are not yet available to `mi_malloc` // `thread_free` for freed blocks by other threads // The `local_free` and `thread_free` lists are migrated to the `free` list // when it is exhausted. The separate `local_free` list is necessary to // implement a monotonic heartbeat. The `thread_free` list is needed for // avoiding atomic operations in the common case. // // // `used - |thread_free|` == actual blocks that are in use (alive) // `used - |thread_free| + |free| + |local_free| == capacity` // // We don't count `freed` (as |free|) but use `used` to reduce // the number of memory accesses in the `mi_page_all_free` function(s). // // Notes: // - Access is optimized for `mi_free` and `mi_page_alloc` (in `alloc.c`) // - Using `uint16_t` does not seem to slow things down // - The size is 8 words on 64-bit which helps the page index calculations // (and 10 words on 32-bit, and encoded free lists add 2 words. Sizes 10 // and 12 are still good for address calculation) // - To limit the structure size, the `xblock_size` is 32-bits only; for // blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size // - `thread_free` uses the bottom bits as a delayed-free flags to optimize // concurrent frees where only the first concurrent free adds to the owning // heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`). // The invariant is that no-delayed-free is only set if there is // at least one block that will be added, or as already been added, to // the owning heap `thread_delayed_free` list. This guarantees that pages // will be freed correctly even if only other threads free blocks. typedef struct mi_page_s { // "owned" by the segment uint32_t slice_count; // slices in this page (0 if not a page) uint32_t slice_offset; // distance from the actual page data slice (0 if a page) uint8_t is_committed : 1; // `true` if the page virtual memory is committed uint8_t is_zero_init : 1; // `true` if the page was initially zero initialized uint8_t use_qsbr : 1; // delay page freeing using qsbr uint8_t tag : 4; // tag from the owning heap uint8_t debug_offset; // number of bytes to preserve when filling freed or uninitialized memory // layout like this to optimize access in `mi_malloc` and `mi_free` uint16_t capacity; // number of blocks committed, must be the first field, see `segment.c:page_clear` uint16_t reserved; // number of blocks reserved in memory mi_page_flags_t flags; // `in_full` and `has_aligned` flags (8 bits) uint8_t free_is_zero : 1; // `true` if the blocks in the free list are zero initialized uint8_t retire_expire : 7; // expiration count for retired blocks mi_block_t* free; // list of available free blocks (`malloc` allocates from this list) uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`) uint32_t xblock_size; // size available in each block (always `>0`) mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`) #if (MI_ENCODE_FREELIST || MI_PADDING) uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`) or padding canary #endif _Atomic(mi_thread_free_t) xthread_free; // list of deferred free blocks freed by other threads _Atomic(uintptr_t) xheap; struct mi_page_s* next; // next page owned by this thread with the same `block_size` struct mi_page_s* prev; // previous page owned by this thread with the same `block_size` #ifdef Py_GIL_DISABLED struct llist_node qsbr_node; uint64_t qsbr_goal; #endif // 64-bit 9 words, 32-bit 12 words, (+2 for secure) #if MI_INTPTR_SIZE==8 && !defined(Py_GIL_DISABLED) uintptr_t padding[1]; #endif } mi_page_t; // ------------------------------------------------------ // Mimalloc segments contain mimalloc pages // ------------------------------------------------------ typedef enum mi_page_kind_e { MI_PAGE_SMALL, // small blocks go into 64KiB pages inside a segment MI_PAGE_MEDIUM, // medium blocks go into medium pages inside a segment MI_PAGE_LARGE, // larger blocks go into a page of just one block MI_PAGE_HUGE, // huge blocks (> 16 MiB) are put into a single page in a single segment. } mi_page_kind_t; typedef enum mi_segment_kind_e { MI_SEGMENT_NORMAL, // MI_SEGMENT_SIZE size with pages inside. MI_SEGMENT_HUGE, // > MI_LARGE_SIZE_MAX segment with just one huge page inside. } mi_segment_kind_t; // ------------------------------------------------------ // A segment holds a commit mask where a bit is set if // the corresponding MI_COMMIT_SIZE area is committed. // The MI_COMMIT_SIZE must be a multiple of the slice // size. If it is equal we have the most fine grained // decommit (but setting it higher can be more efficient). // The MI_MINIMAL_COMMIT_SIZE is the minimal amount that will // be committed in one go which can be set higher than // MI_COMMIT_SIZE for efficiency (while the decommit mask // is still tracked in fine-grained MI_COMMIT_SIZE chunks) // ------------------------------------------------------ #define MI_MINIMAL_COMMIT_SIZE (1*MI_SEGMENT_SLICE_SIZE) #define MI_COMMIT_SIZE (MI_SEGMENT_SLICE_SIZE) // 64KiB #define MI_COMMIT_MASK_BITS (MI_SEGMENT_SIZE / MI_COMMIT_SIZE) #define MI_COMMIT_MASK_FIELD_BITS MI_SIZE_BITS #define MI_COMMIT_MASK_FIELD_COUNT (MI_COMMIT_MASK_BITS / MI_COMMIT_MASK_FIELD_BITS) #if (MI_COMMIT_MASK_BITS != (MI_COMMIT_MASK_FIELD_COUNT * MI_COMMIT_MASK_FIELD_BITS)) #error "the segment size must be exactly divisible by the (commit size * size_t bits)" #endif typedef struct mi_commit_mask_s { size_t mask[MI_COMMIT_MASK_FIELD_COUNT]; } mi_commit_mask_t; typedef mi_page_t mi_slice_t; typedef int64_t mi_msecs_t; // Memory can reside in arena's, direct OS allocated, or statically allocated. The memid keeps track of this. typedef enum mi_memkind_e { MI_MEM_NONE, // not allocated MI_MEM_EXTERNAL, // not owned by mimalloc but provided externally (via `mi_manage_os_memory` for example) MI_MEM_STATIC, // allocated in a static area and should not be freed (for arena meta data for example) MI_MEM_OS, // allocated from the OS MI_MEM_OS_HUGE, // allocated as huge os pages MI_MEM_OS_REMAP, // allocated in a remapable area (i.e. using `mremap`) MI_MEM_ARENA // allocated from an arena (the usual case) } mi_memkind_t; static inline bool mi_memkind_is_os(mi_memkind_t memkind) { return (memkind >= MI_MEM_OS && memkind <= MI_MEM_OS_REMAP); } typedef struct mi_memid_os_info { void* base; // actual base address of the block (used for offset aligned allocations) size_t alignment; // alignment at allocation } mi_memid_os_info_t; typedef struct mi_memid_arena_info { size_t block_index; // index in the arena mi_arena_id_t id; // arena id (>= 1) bool is_exclusive; // the arena can only be used for specific arena allocations } mi_memid_arena_info_t; typedef struct mi_memid_s { union { mi_memid_os_info_t os; // only used for MI_MEM_OS mi_memid_arena_info_t arena; // only used for MI_MEM_ARENA } mem; bool is_pinned; // `true` if we cannot decommit/reset/protect in this memory (e.g. when allocated using large OS pages) bool initially_committed;// `true` if the memory was originally allocated as committed bool initially_zero; // `true` if the memory was originally zero initialized mi_memkind_t memkind; } mi_memid_t; // Segments are large allocated memory blocks (8mb on 64 bit) from // the OS. Inside segments we allocated fixed size _pages_ that // contain blocks. typedef struct mi_segment_s { // constant fields mi_memid_t memid; // memory id for arena allocation bool allow_decommit; bool allow_purge; size_t segment_size; // segment fields mi_msecs_t purge_expire; mi_commit_mask_t purge_mask; mi_commit_mask_t commit_mask; _Atomic(struct mi_segment_s*) abandoned_next; // from here is zero initialized struct mi_segment_s* next; // the list of freed segments in the cache (must be first field, see `segment.c:mi_segment_init`) size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`) size_t abandoned_visits; // count how often this segment is visited in the abandoned list (to force reclaim it it is too long) size_t used; // count of pages in use uintptr_t cookie; // verify addresses in debug mode: `mi_ptr_cookie(segment) == segment->cookie` size_t segment_slices; // for huge segments this may be different from `MI_SLICES_PER_SEGMENT` size_t segment_info_slices; // initial slices we are using segment info and possible guard pages. // layout like this to optimize access in `mi_free` mi_segment_kind_t kind; size_t slice_entries; // entries in the `slices` array, at most `MI_SLICES_PER_SEGMENT` _Atomic(mi_threadid_t) thread_id; // unique id of the thread owning this segment mi_slice_t slices[MI_SLICES_PER_SEGMENT+1]; // one more for huge blocks with large alignment } mi_segment_t; typedef uintptr_t mi_tagged_segment_t; // Segments unowned by any thread are put in a shared pool typedef struct mi_abandoned_pool_s { // This is a list of visited abandoned pages that were full at the time. // this list migrates to `abandoned` when that becomes NULL. The use of // this list reduces contention and the rate at which segments are visited. mi_decl_cache_align _Atomic(mi_segment_t*) abandoned_visited; // = NULL // The abandoned page list (tagged as it supports pop) mi_decl_cache_align _Atomic(mi_tagged_segment_t) abandoned; // = NULL // Maintain these for debug purposes (these counts may be a bit off) mi_decl_cache_align _Atomic(size_t) abandoned_count; mi_decl_cache_align _Atomic(size_t) abandoned_visited_count; // We also maintain a count of current readers of the abandoned list // in order to prevent resetting/decommitting segment memory if it might // still be read. mi_decl_cache_align _Atomic(size_t) abandoned_readers; // = 0 } mi_abandoned_pool_t; // ------------------------------------------------------ // Heaps // Provide first-class heaps to allocate from. // A heap just owns a set of pages for allocation and // can only be allocate/reallocate from the thread that created it. // Freeing blocks can be done from any thread though. // Per thread, the segments are shared among its heaps. // Per thread, there is always a default heap that is // used for allocation; it is initialized to statically // point to an empty heap to avoid initialization checks // in the fast path. // ------------------------------------------------------ // Thread local data typedef struct mi_tld_s mi_tld_t; // Pages of a certain block size are held in a queue. typedef struct mi_page_queue_s { mi_page_t* first; mi_page_t* last; size_t block_size; } mi_page_queue_t; #define MI_BIN_FULL (MI_BIN_HUGE+1) // Random context typedef struct mi_random_cxt_s { uint32_t input[16]; uint32_t output[16]; int output_available; bool weak; } mi_random_ctx_t; // In debug mode there is a padding structure at the end of the blocks to check for buffer overflows #if (MI_PADDING) typedef struct mi_padding_s { uint32_t canary; // encoded block value to check validity of the padding (in case of overflow) uint32_t delta; // padding bytes before the block. (mi_usable_size(p) - delta == exact allocated bytes) } mi_padding_t; #define MI_PADDING_SIZE (sizeof(mi_padding_t)) #define MI_PADDING_WSIZE ((MI_PADDING_SIZE + MI_INTPTR_SIZE - 1) / MI_INTPTR_SIZE) #else #define MI_PADDING_SIZE 0 #define MI_PADDING_WSIZE 0 #endif #define MI_PAGES_DIRECT (MI_SMALL_WSIZE_MAX + MI_PADDING_WSIZE + 1) // A heap owns a set of pages. struct mi_heap_s { mi_tld_t* tld; mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size. mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin") _Atomic(mi_block_t*) thread_delayed_free; mi_threadid_t thread_id; // thread this heap belongs too mi_arena_id_t arena_id; // arena id if the heap belongs to a specific arena (or 0) uintptr_t cookie; // random cookie to verify pointers (see `_mi_ptr_cookie`) uintptr_t keys[2]; // two random keys used to encode the `thread_delayed_free` list mi_random_ctx_t random; // random number context used for secure allocation size_t page_count; // total number of pages in the `pages` queues. size_t page_retired_min; // smallest retired index (retired pages are fully free, but still in the page queues) size_t page_retired_max; // largest retired index into the `pages` array. mi_heap_t* next; // list of heaps per thread bool no_reclaim; // `true` if this heap should not reclaim abandoned pages uint8_t tag; // custom identifier for this heap uint8_t debug_offset; // number of bytes to preserve when filling freed or uninitialized memory bool page_use_qsbr; // should freeing pages be delayed using QSBR }; // ------------------------------------------------------ // Debug // ------------------------------------------------------ #if !defined(MI_DEBUG_UNINIT) #define MI_DEBUG_UNINIT (0xD0) #endif #if !defined(MI_DEBUG_FREED) #define MI_DEBUG_FREED (0xDF) #endif #if !defined(MI_DEBUG_PADDING) #define MI_DEBUG_PADDING (0xDE) #endif #if (MI_DEBUG) // use our own assertion to print without memory allocation void _mi_assert_fail(const char* assertion, const char* fname, unsigned int line, const char* func ); #define mi_assert(expr) ((expr) ? (void)0 : _mi_assert_fail(#expr,__FILE__,__LINE__,__func__)) #else #define mi_assert(x) #endif #if (MI_DEBUG>1) #define mi_assert_internal mi_assert #else #define mi_assert_internal(x) #endif #if (MI_DEBUG>2) #define mi_assert_expensive mi_assert #else #define mi_assert_expensive(x) #endif // ------------------------------------------------------ // Statistics // ------------------------------------------------------ #ifndef MI_STAT #if (MI_DEBUG>0) #define MI_STAT 2 #else #define MI_STAT 0 #endif #endif typedef struct mi_stat_count_s { int64_t allocated; int64_t freed; int64_t peak; int64_t current; } mi_stat_count_t; typedef struct mi_stat_counter_s { int64_t total; int64_t count; } mi_stat_counter_t; typedef struct mi_stats_s { mi_stat_count_t segments; mi_stat_count_t pages; mi_stat_count_t reserved; mi_stat_count_t committed; mi_stat_count_t reset; mi_stat_count_t purged; mi_stat_count_t page_committed; mi_stat_count_t segments_abandoned; mi_stat_count_t pages_abandoned; mi_stat_count_t threads; mi_stat_count_t normal; mi_stat_count_t huge; mi_stat_count_t large; mi_stat_count_t malloc; mi_stat_count_t segments_cache; mi_stat_counter_t pages_extended; mi_stat_counter_t mmap_calls; mi_stat_counter_t commit_calls; mi_stat_counter_t reset_calls; mi_stat_counter_t purge_calls; mi_stat_counter_t page_no_retire; mi_stat_counter_t searches; mi_stat_counter_t normal_count; mi_stat_counter_t huge_count; mi_stat_counter_t large_count; #if MI_STAT>1 mi_stat_count_t normal_bins[MI_BIN_HUGE+1]; #endif } mi_stats_t; void _mi_stat_increase(mi_stat_count_t* stat, size_t amount); void _mi_stat_decrease(mi_stat_count_t* stat, size_t amount); void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount); #if (MI_STAT) #define mi_stat_increase(stat,amount) _mi_stat_increase( &(stat), amount) #define mi_stat_decrease(stat,amount) _mi_stat_decrease( &(stat), amount) #define mi_stat_counter_increase(stat,amount) _mi_stat_counter_increase( &(stat), amount) #else #define mi_stat_increase(stat,amount) (void)0 #define mi_stat_decrease(stat,amount) (void)0 #define mi_stat_counter_increase(stat,amount) (void)0 #endif #define mi_heap_stat_counter_increase(heap,stat,amount) mi_stat_counter_increase( (heap)->tld->stats.stat, amount) #define mi_heap_stat_increase(heap,stat,amount) mi_stat_increase( (heap)->tld->stats.stat, amount) #define mi_heap_stat_decrease(heap,stat,amount) mi_stat_decrease( (heap)->tld->stats.stat, amount) // ------------------------------------------------------ // Thread Local data // ------------------------------------------------------ // A "span" is is an available range of slices. The span queues keep // track of slice spans of at most the given `slice_count` (but more than the previous size class). typedef struct mi_span_queue_s { mi_slice_t* first; mi_slice_t* last; size_t slice_count; } mi_span_queue_t; #define MI_SEGMENT_BIN_MAX (35) // 35 == mi_segment_bin(MI_SLICES_PER_SEGMENT) // OS thread local data typedef struct mi_os_tld_s { size_t region_idx; // start point for next allocation mi_stats_t* stats; // points to tld stats } mi_os_tld_t; // Segments thread local data typedef struct mi_segments_tld_s { mi_span_queue_t spans[MI_SEGMENT_BIN_MAX+1]; // free slice spans inside segments size_t count; // current number of segments; size_t peak_count; // peak number of segments size_t current_size; // current size of all segments size_t peak_size; // peak size of all segments mi_stats_t* stats; // points to tld stats mi_os_tld_t* os; // points to os stats mi_abandoned_pool_t* abandoned; // pool of abandoned segments } mi_segments_tld_t; // Thread local data struct mi_tld_s { unsigned long long heartbeat; // monotonic heartbeat count bool recurse; // true if deferred was called; used to prevent infinite recursion. mi_heap_t* heap_backing; // backing heap of this thread (cannot be deleted) mi_heap_t* heaps; // list of heaps in this thread (so we can abandon all when the thread terminates) mi_segments_tld_t segments; // segment tld mi_os_tld_t os; // os tld mi_stats_t stats; // statistics }; #endif
Simpan
Batal
Isi Zip:
Unzip
Create
Buat Folder
Buat File
Terminal / Execute
Run
Chmod Bulk
All File
All Folder
All File dan Folder
Apply