ELF>p"@0@8 @pp -a-a000*888$$Ptd@@@QtdRtd000GNU\W`PG!r+@+f8| o8TrsD $fbwb>k], NXF"~vU _}!__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyInit_cmathPyModule_Create2PyFloat_FromDoublePyModule_AddObject_Py_dg_infinityPyComplex_FromCComplex_Py_dg_stdnanPyComplex_AsCComplexPyErr_Occurred__errno_locationPyExc_ValueErrorPyErr_SetStringPyExc_OverflowErrorlog1patan2_Py_c_neghypotlogsqrttanhtancoshsinsincosasinhldexp_Py_c_quot_PyArg_CheckPositionalPyBool_FromLong_Py_c_absPy_BuildValuePyFloat_TypePyFloat_AsDoublePyErr_SetFromErrno_PyArg_UnpackKeywords_Py_c_difflibm.so.6libc.so.6GLIBC_2.29GLIBC_2.2.5/opt/alt/python39/lib64:/opt/alt/sqlite/usr/lib6402ui =(ui =0_8P_@@`hpx@01 E(M8@KH6X@`PhOxV'[,@A:F >a> e(Z8@mH PX@`vhPx|Q4BPGPQ R ;(`S8 @LHHX`Qh LxL`W M \`-(0 @`eȿпؿ#&Ⱦ о ؾ    (08@HPX`hp x!"$%&'()*HHɟHtH5j%l@%jh%bh%Zh%Rh%Jh%Bh%:h%2hp%*h`%"h P%h @%h 0% h %h %h%h%h%h%ڝh%ҝh%ʝh%h%h%hp%h`%hP%h@%h0%h %h%zh%rh%jh %bh!%Zh"%Rh#HiH5mH:HNH5mH: H3H5omH:  y|$(l$ Y\$Yf($D $fEDd$Dt$ Dl$(D~zAXfD.{LH H5lH9+HH5lH:HtH5lH:"HNH5lH:HH=zlAt&I<$fI~fI~UH 9 HH5'lH:l#HЛH5 lH:Qr$"{%HH5kH:+L(H H5kH9(HtH5kH:(HYH5kH:)H .H5hkH9R+H#H5_kH:7+H1[H1[1HH1[A^H[A^4H1[A^$\$@$T$@HlH{H9oDD$@D<$f( xD wD4$HD~6xDl$@)L$D%u<0HֹH=jSH;H- H9o-J/T$@$l$@4$f(f.f(=+xfD()|$l$@D$,$t$@Huht$@,$D,$D~aw|$@HD%ufE(fETfE.sfE.vwfD(fE-fD(82Hh1[]d$@4$D,$fD(pwDt$@HD 7vD)T$D~vD%t.D=vfD(fE.HH:32H35H6H}L9g 6W7f(,$f(D$f=t)l$ )D$0551616H5ffD($fD(d$f/D)\$ D)d$054fAWHAVSfI~fI~THuuJfInfIn~uHfWVf(f(~ ufWf(ʃ!t">[A^A_@H H5gH9[1A^A_fAVf(f(f(SH8~55urfTf.f(fTf.}ff/OL$L$ T$|$b rDD$l$HfD/d$f/L$ D tfE.zfE(fD(irfE\DYAYfE(EYEXA^f.zl$(D\$Dt$DD$ l$  sD5qd$XD\$DYD$(YqYDt$A\T$1f(fW sY qH8f([A^@f(RH8[A^fDl$T$D$.D$.H H!t"YH[A^fH H5bH9H1[A^AVHSHafI~L$HuRL$fInH>!t"H[A^"fH H5CbH9H1[A^Sf(f(H0~%o-{mfTfTf.f(f.f/muf( $T$D$$$D$DT$ $D nfE(f(DYfA(Y^EYAXfD(EXEYA^E^fD(DYDYDd$D,$]t$ $H0f([ff.f.ff.zD$f(T$L$$D$q $T$fEDt$XfA/Dt$YfT .n $ $AD|$%k5mfD.DH0f([@D$f( $\$6)$*)H51H H)HHDA\$D$DL$E1=Lk $t$fD.DT$ffA.!DCS@t$ $A-jf.5lE1f(H|$(Ht$ T$\$D$Yjd$Dt$ D|$(fT%lfV%/lD4$D|$d$7Dl$DY-jDY,$DYSHH0$L$HZ~Ml $jHfTf.T$fTf.-jf/f/ Qk\$L$fW kD$+kX$L$ L$ $f(D$(D$kDD$(L$D$D$ Y $AY\t$XfD(fDD)$$L$H0[k$&D$&H5hH H)Hf()$H01[ $f(D,$fEfD(fE/w{ hfA(D\$YYL$D|$D~5jXh~jfEWd$fETfTfAVf(f)$ h$DYYL$fA(~l$X3h~j~= j$$fTfTfVfW@Sf(f(f(H0~5i gfTf.af(fTf.Off.E„tf.Eʄgf/l g|$(l$ Y\$Yf($D$fEDd$Dt$ Dl$(D~iAXfD.QXf(fE/fDT%hXD^r>fETf(fEVfA) $J~$H\$H0fHn[fATfA(fAVf),$ H\$~$H0fHn[Ðf(fH~D\$<$$#D$#L zLI)IMA~IXR@f/f/f(¿5\$(|$ l$d5$D$Of($X$fEt$|$ \$(4$fD.\$ |$QD4$fEDl$D~PgDd$ Af/FFDd$ Dl$D4$|D4$fED~gXDd$ Dl$LrAWHAVSfI~fI~DHu_:fInfIn~fHfWFf(f(~ tffWf(ʃ!"[A^A_[1A^A_Sf(f(f(H@~%7fcfTf.!fTf.5df/af/WOef(fW eT$(\$ X|$($eL$L$ \|$8fD($L$0DD$(YL$AY\!Dd$( $Dl$0DYl$D$ AYD$8A\ t$ fD(fDD)4$H$HD$H@fHn[fHnT$$p$@ D$3 H ZLI)IJJDH@[fHnfHn@f/cf($_bT$ Yl$Y}SXsb$$~NdfT%6dfTfVL$D$ $,$f(f)$$H$HD$H@fHn[fHn;$D~=cXa~cfAWfATfTfVfAWnff.AWHAVSfI~fI~HuUfInfInfWXcH:!t"[A^A_pH YH5UH9[1A^A_fSf(f(H@~ c-`fTfTf.f.f/`aH|$8Ht$0f(T$L$t$0|$8f(4$|$ L$(Y$D$D$(YD$ DD$fDD$ D)$DL$D~LbD `Dd$ fETfE.fETfE.$L$H@[Df.f.ff.zf(T$(d$ L$D~afD($D$fETfDV afL~D$Dl$(fEDt$ fE/fDfDTDaDl$ fDVaDt$D)$D\$wD~=&afHnfEWfA)$\$1-^d$ f.wp8f( $d$ T$>$2H5H H)Hf($)$$.t$ 1=f^d$f.v1f.A!AK8efD(f(L$ fDT-P`fDV-_A\T$GDt$$fA(Dt$(D$D$ D$ D$(fD($YD$DY|$ f(fAfY`)$fT$M$D~_D~]Dd$fATfA.sjf.AVHSHfI~L$HuRL$fInH.!t"H[A^bfH IH5QH9H1[A^AWHAVUSH8fI~fI~oHwafInfIn~^5\HfTfTf.Lf.fInfH~fInfInf/-\D$fInf(fHnYYL$D~J^f(fATf.=\fDTfD.[H8[]A^A_:f.fInL$\$JfInƉ>H=ŖD$H4H)HHf.[DD^iD e[D|$fE.!HH5OH;/H81[]A^A_ff. [f.fEfMnfE.zfInfA/fInH|$(Ht$ L$\$~=\DT$ D\$(D$D~\f.ZfDTfDTD|$fEVfEVfA(fA(fD.=hZvafMnfD/ [vQffInL$fInAELIAOM)IMEEZH8fA(fA([]A^A_T@fInL$\$ ~[f(fInfTL$~-[d$f.%YfD(DT$fDTD|$fA(fA(\Z#%[f(fHnYYL$YYH}"H5MH8 fInL$\$fInƉ~HDt$AD|$IH)HHfD.5XDDX.AWHBAVAUATIUHSHHH>fI~fI~H HH8fInfIn H[]A\A]A^A_~fDMl$fInfInfI~fH~MtxL7D$ $HuJD$ $bf(f(fInfHn[pH[]A\A]A^A_fDH1[]A\A]A^A_Ã;=ff.Sf(H0~YD$fT $\$ %Wd$ Hf.,$~5=YfTf.g 7Wf/f/=+Wf/f(t$(d$ D$6f/WDD$ DL$(rD WfD/sNL$D$ $sd$ fD(fDD)$$~$HD$H0fHn[D-WfE/fA(E\D4$AXAYfE(EYAXf.3Wz{UYL$$\$ t$ f(f) $HD$~$H0[fHnD$$ H=H4H)HHHF~H0[fHn HUD$YY $GUX4fDf/ff/vLf(ƿ5d$(5D$ D$(L$ Gf(\&Uf/wL$f(!f(UfH~1xTYfA(EXDt$A\AY5 $t$(d$ pAVHSHqfI~ $Hu{ $fInH$L$f($f^FV)$!t%"2$L$H[A^ DH wH5+HH9H1[A^AWHAVSfI~fI~Huu fInfIn~hUHfWVf(f(~ DUfWf(ʃ!t"[A^A_d@H IwH5GH9[1A^A_fSf(f(H@~T-RfTfTf.f.f/RQH|$8Ht$0f(T$L$|$0t$8f(<$t$ L$($Y$D$D$(YD$ DD$fDD$ D)$DL$D~!t"H[A^bfH IsH5CH9H1[A^AVHSH!fI~L$qHuDgL$fInH!]"oH[A^fDH1[A^ff.AWHAVSfI~fI~HuufInfIn~HPHfWvf(f(~ $PfWf(ʃ!t"[A^A_D@H )rH5cBH9[1A^A_fSHH0$L$SHJE~O$ xMHfTf.l$fTf.Mf/f/$\Nf(cD$(NX$L$ L$?YL$ f(D$(t$YXL$$D$ $$XfD(fDD)$$L$H0[$ D$ H5{H H)HfD(D)$fDH01[ @L$YYL$? $D$ D$ l$ X-CLfD(fDD)$9AVHSH!fI~L$qHuDgL$fInH~!"H[A^fDH1[A^ff.SHHD$fH~H~ bMD$1KfTf.rfHn1fTf.@H[Kff.SHH3D$fH~H#~ LD$fTf.Jw&fHn1fTf.J@H[DH[fHHD$ $HD$1f.$@HAVHSHqfI~L$HpL$fInHRH[A^@f(f(f.~ KIf(fTfTf.wLf.%Iwf.JE„~-KfTfVKfTf.Jz?u=@f.wBfTbKfVzKfIYXJfVK~5 KfTfVJfTf.xJzufV\Kf(fVPKff.@AVHSHfI~ $BH4 $fInHL$L$$fIn $uHH=<[A^H[A^bfUSHHhH!H>H-KlH9oOH{)\$IH9oWL$@$pDl$@D~ID4$HD%GfE(fETfE.fE.fE(fEfETfE.fEfE.zfE/QfA(Dl$@D4$Dd$HD)\$0DT$FD$fH~fA(D\$ *T$@\$fLnfD(5HfDf.fETfDV-HfEWED),$f.Dt$ fD(\$0Dd$HfETfE.p!Hh[]@SKHf(f.zH{)D$H9o_\$@ $l$@D$f(f.zd$@D$D,$D~HDt$@HD%EfE(fETfE.7f.fE(fEfETfE.NfE.fE.~=GfA(~ GD FfTfVfA.fE.fE.fE(fDTfDV/)fE.zAt A@ILUmH)IIfCo fE.fA(fTFfVfFf.BFzt @fE.*fE.zfE(fDTFfDVFfD.ELFHH=lH)HHfoD7PfE.)$ADEEtfE.zfETfE.$L$Hh[]WfA(H|$XHt$PDd$0D)\$ Dt$@Dl$l$fd$PfT%EfV%Ef.Dt$@fD(\$ Dd$0)$$epD1fE.~=E~ DD DDfE.EYfA(fA) $E1ADVfDfE.z AAff.XDz H|$XHt$PfA(fDL$PfDYL$D) $wff.@`Bf(fT Df.s>f.z!fTcDfVCf.Czu f1Df.HCf(fT$DfVCzuf.CztÐf.hCztfHg!uH=eH536H?1HÃ"H eH56H9dfATUHHSHĀHHYHHALAiHHT$hR1jj H HHH}d$L$HH}BD$L$HHH}HL%eL9gH1ff($f(l$f/)\$ )l$0PT$L$f(fD(f.@E@tf.ADEED$HD~`BD@fETfE.fATfA.fATfA.fATfA.Dd$ Dl$(|$PT$0\$8fA(fA(Dd$XT$ \$Dl$0n L$$D$ Dt$PAYDt$f/$D$XL$0D|$$AYf/l$H1f/@tH[]A\H}H UcH9OWf($$ff(t$=g?T$H)d$ )t$0f/L$HT$8L$(At$0DD$ f.AEEE^fA.AEÄJH[]A\H}L9gwfDofD(4$f/fD(|$Dl$HD)t$ D)|$0WL wbH5X3I9H 11I@1D?f(fA.DD$0jdD$ g|$ HuXH~HHpPHA1Lze1HD$hPjjHt$ DH H$HH31%f(<$f(d$fEDL$H)|$ ==)d$0Pf.>D$HuOH1D >DL$0|$ f.D$0|$ D$Htzf.fH=dHdH9tH`Ht H=dH5dH)HH?HHHtH`HtfD=edu+UH=`Ht H=\d=d]wATH=RcIHX!Y<H5-0LH=H50LHk;H5/LH1mH5I0LHf1Of(fH5/LH@1yTH5 0LH"1[f(fNH5s/LHf(;f(\;f( d;%$<)ef5;f(e;)^ff;)ffY) f) f ;):f%Rf%f%f&f&f.f .f .f .f .f .f .f .f .f56f6f6f>f >f;%>f%Ff%^f%ff%nf%f%f%f%f%fHeHXf ee e e5eef f ff f f5 f(f0f 0f 0f 0f 0f 0fD9%?fDVfDfHRfHWfH\fHaf e e e5eeeeef5 f5f5fffffffffffffff(-8D8fD(-o8%ffD(%n8fD(=E8)-^fD)-fD)=eD)-fD)%fD)%&fDUfDf5eeefff f f f f f f f ff$f$f$f ,fD;f%Cf%[fDrfDf%f%fDfHeHeHGfHLf e e eeeee e e f f ffff f f f f f fH6%-fDfH=fHbfHgf e eeeeeeeeeeeffffffffffffffff(-5fD(5D~55%ffD( \5D)fD) eD)fD)5fD)5$f)--fDLfDfee5ff5f f f f f f f f f5f#f#f5#f +f +f+f%[fDrf%fDfHfHcfHhfHefee e e5eeee e ee f f ffff f f f f f f f f%%fDfH5fHZfH_fHfeeeeeeeeeef f f f f f f f f ffffffffD( 2fD(2DfD) fD) fD) fD)!fD))fD)1ffE%fDfHffff f f f f f f f f f(f(f(f 0f 0f0f0f0f 8f%HfD_f%fDf%gH3fHHfHMfHJfHWfH\fHafHf eeee e ee e ee f f f f f f f fffD%fD,fD3f%;f%Cf%KfDbf%fHeHeHeHeHeHeHeHeH?feeeeeeeeeeeff f ffD5v/HfD5fD5fHfHfee e eeeeeee e e e e e e e eeeeee e ee eD5BfD5IfHeHeHfH%fH:fH?f eeee e ee e eeeee e e e e e e e eeeeef(-'-fD( .-H fH`fHefee e eeee e eeeeeeeeeeeeeeeeeD)e)-eD) eD~ E,fD(5,,D)e)-eD)eD)e)=f)-f)-f)-!f)-*f)=3f)=gfff f ffffffffffffffffffD)-gfD(%%$HgHgHgD)%ffff5f f f f f f f f ffffff5f f ff g g g g g g gH!gH&gH#g5f f ff g gggggg5g g g g g g g g gggggg5gggggD~="fD("HfHffffffff5fffffffffffffD)=f)-gD) gD)=g)-gD)=%gD)=-g)=6g)-?gf(%'!D~.!fD(- )-.g)-7g)-@g)=Ig)=Rg)=[g)-dg)%mgD)ug)-~g)=g)=g)=g)-gD)-gD)g)-g)=g)=g)=g)-g)-g)-g)-g)=h)= hD) h)-hD)5%hD) -hHhHF)- hD) (hD) 0h)=9h)=BhJhJhJhRhRhRhRhRhRhFF F F5F5 F F F F F F F F F F F FHWFHTFHiFHFHFHFH}FHzFHwFHFHFHF E E E E E EEEEE E EEEE E E E EE EHEHEHEHEHF EEE E E E E E E E EEEEEEE E EEEE E EEEEEHEHFEEEEEEEEEEEELA\HHpitauinfjnanjmath domain errormath range errorlogddrectacosacoshasinasinhatanatanhexpiscloseisfiniteisinfisnanlog10phasepolarsqrtabrel_tolabs_tolcmathtolerances must be non-negativetanh($module, z, /) -- Return the hyperbolic tangent of z.tan($module, z, /) -- Return the tangent of z.sqrt($module, z, /) -- Return the square root of z.sinh($module, z, /) -- Return the hyperbolic sine of z.sin($module, z, /) -- Return the sine of z.rect($module, r, phi, /) -- Convert from polar coordinates to rectangular coordinates.polar($module, z, /) -- Convert a complex from rectangular coordinates to polar coordinates. r is the distance from 0 and phi the phase angle.phase($module, z, /) -- Return argument, also known as the phase angle, of a complex.log10($module, z, /) -- Return the base-10 logarithm of z.log($module, z, base=, /) -- log(z[, base]) -> the logarithm of z to the given base. If the base not specified, returns the natural logarithm (base e) of z.isnan($module, z, /) -- Checks if the real or imaginary part of z not a number (NaN).isinf($module, z, /) -- Checks if the real or imaginary part of z is infinite.isfinite($module, z, /) -- Return True if both the real and imaginary parts of z are finite, else False.isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0) -- Determine whether two complex numbers are close in value. rel_tol maximum difference for being considered "close", relative to the magnitude of the input values abs_tol maximum difference for being considered "close", regardless of the magnitude of the input values Return True if a is close in value to b, and False otherwise. For the values to be considered close, the difference between them must be smaller than at least one of the tolerances. -inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is not close to anything, even itself. inf and -inf are only close to themselves.exp($module, z, /) -- Return the exponential value e**z.cosh($module, z, /) -- Return the hyperbolic cosine of z.cos($module, z, /) -- Return the cosine of z.atanh($module, z, /) -- Return the inverse hyperbolic tangent of z.atan($module, z, /) -- Return the arc tangent of z.asinh($module, z, /) -- Return the inverse hyperbolic sine of z.asin($module, z, /) -- Return the arc sine of z.acosh($module, z, /) -- Return the inverse hyperbolic cosine of z.acos($module, z, /) -- Return the arc cosine of z.This module provides access to mathematical functions for complex numbers.-DT!@_??@ @Ҽz+#@9B.??9B.?Q?7'{O^B@Gz?& .>!3|@-DT! @-DT! @!3|@!3|-DT! -DT! @!3|@-DT!-DT!?-DT!-DT!?|)b,g|)b,g??-DT!?iW @iW @Uk@Uk@-DT!?!3|@-DT! @;;0|Kf`X%@$KpfhɅD @l[$ l T Ȇ Έ D  ,x  tЛP<` ```4` P@ в  p t к л `(zRx $PFJ w?;*3$"D0}!Bz!4`4BEA k BBI WDB D|BMDP EBE R ABK R ABK 0BDD0L ABG ZCB0/00HBDD0L ABG ZCB|0, IAL@ EC  EE ,@AG@7 AH | CI , AP@) FH p FB $qn@4<hBEA o BBE ADBt6 4APP0 FI P AO  FI 4~BEA O BBE WDB9  HALP  AF @ P0XBDD0L ABG ZCB0`К9BEA A(D` (A ABBO  (C ABBC ' (K ABBI x4BFB B(D0D8DP[ 8A0A(B BBBK { 8A0A(B BBBK D 8C0A(B BBBA ~HP4P/AH@  FD  AM B AM 0HBDD0q ABJ ZCB~04(BEA k BBI WDB`}~  |vALP  AF X~ P0<BDD0L ABG ZCB~00prBDD0P ABK DCB8}604PBEA k BBI WDB} ,AG@ AH D CI 0rBDD0P ABK DCBg}60 ԨeAG WA@e} DC(\wAG U AJ DF%} DC@?D v| F$P\BDD0JAB(|0D CBA DAB(\0<hBDD0d MBE DABpb| 0DCB8AAG AAI j AAL $| CAA  NDh A $ }l8 BAG DQYDBI   AABD   AABA ZBBN N}_P_@(I 08o` { ` @ oo oo$ oQ6 F V f v !!&!6!F!V!f!v!!!!!!!!!""&"6"F"V"f"@01EMK6@POV'[,@A:F >a>eZm P@vP|Q4BPGPQ R;`S LHQ LL`W M \`- `ecmath.cpython-39-x86_64-linux-gnu.so-3.9.23-1.el9.x86_64.debugg@7zXZִF!t/]?Eh=ڊ2N$m' pDƷɖ M.XO^0qV(0ӳ_Տ .d9*q3h+{7퓔|i2,;Zf=$b(VV?恑.f:@ĀHi!}A)qVka;k4ήnoN؁L/\oydh1¼?˘VRp0׿/3opiB4 \}D-{ 5ìt8Kߥեq !p2a;\O0Vt|1&hWθ6jW|h^;XS&g%N_'ō# oR`=YcxyPjݲokjp0`;̹yIgu 8zQ(J Cη3mk?838WQy#80l* W-!o3@f'ܸҷWlOP:KyUrUwN,rM _vWUwfq'qč죸z'acⅱB϶R{L^*sӒ'iIbBZuEZ&H-hcӎ9bwyglndl"њKMMa$f`pDz@f tō)X4 /P&]8 "P1ё/̪@V]LhpUȥU1kL 5yx<׏< ]N)6zMau_HZ})xd ]Hۯ4 =z:I-6K-bRI7*8pC|Guf[ *5D 5]7Rm+.sJb>X_%{¢Lًu1~U#;vk ֖B),š}m