ELF>e@@8 @]]```}}}}*+HHH888$$Ptd\\\QtdRtd00GNU 2Ha%zzG~a0w* JA*;DXr5qmQavi%tKB"b :.IPY2 .m@%azXjj, :eF"[U __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyInit__decimalPyMem_MallocPyMem_ReallocPyMem_FreePyLong_TypePyFloat_TypePyBaseObject_TypePyType_ReadyPyUnicode_FromStringPyDict_SetItemStringPyImport_ImportModulePyObject_GetAttrStringPyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_NewPyTuple_PackPyExc_TypeErrorPyExc_ZeroDivisionErrorPyObject_CallObjectPyContextVar_New_Py_TrueStructPyLong_FromSsize_tPyUnicode_InternFromStringPyModule_AddStringConstantstderrfprintffwritefputcPyModule_AddIntConstantstrcmpPyExc_RuntimeErrorPyErr_Format_Py_Dealloc_PyObject_New_Py_NoneStructPyArg_ParseTupleAndKeywordsPyLong_AsSsize_tPyUnicode_ComparePyErr_SetStringPyList_SizePyList_GetItemPyErr_OccurredPyExc_ValueErrorPyContextVar_GetPyType_IsSubtypePyContextVar_Set_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_PyUnicode_ReadyPyErr_NoMemory__ctype_b_loc__errno_locationstrtollabortPyList_NewPyErr_SetObjectPyList_AppendPyFloat_AsDoublePyComplex_FromDoublesPyFloat_FromStringPyUnicode_Newmemset_PyLong_NewPyExc_OverflowErrorPyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyTuple_TypePyDict_SizePyDict_GetItemWithErrorPyObject_IsTruePyExc_KeyErrorPyLong_FromLong_PyLong_GCDPyLong_FromUnsignedLongPyObject_CallFunctionObjArgsstrlenPy_BuildValue_Py_NotImplementedStruct_Py_FalseStructmemcpyPyArg_ParseTuplePyObject_GenericSetAttrPyExc_AttributeErrorPyBool_FromLongPyComplex_TypePyObject_IsInstancePyComplex_AsCComplexPyFloat_FromDoublePyList_AsTuplePyTuple_SizePyLong_AsLongsnprintfPyObject_FreePyUnicode_AsUTF8AndSizePyUnicode_DecodeUTF8localeconvmemmove__ctype_tolower_locPyDict_GetItemStringPyUnicode_AsUTF8StringmbstowcsPyUnicode_FromWideCharPyUnicode_FromFormatPyErr_ClearPyDict_NewPyDict_SetItemfreerealloccallocmallocPyObject_HashNotImplementedPyType_GenericNewlibc.so.6GLIBC_2.3GLIBC_2.14GLIBC_2.2.5/opt/alt/python39/lib64:/opt/alt/sqlite/usr/lib64ii ui @(@h  (#038C@NX0$(h@p 0@H~h@x8PP%x#p}@ H X Z  _(0P$HdPXВpix n $w@P@HP`h (0`8p@0HPPpX`h0`@H@X`<`h0 x;::: = 9A7_6 (`85@H_X@4`hXx32 2e2`140j6 0 #(88/@+H?X@.`7h`x*@PE(O@'S '` &j@ & v(` 8%@}H X %`h x$  $ # " !`@! V(8 @HX@ `hExPp%@C (^8@@HX@`!h x@3`=QJ  V' a,  m(J8@ @tHSX` `{hUx@ v0&pp (0@H@`hP`P@HbXX`huxXz@X {XW0 WV (P8`V@H@XU`hЛxUpUЛT`Tc TPeS  (Pf8S@HnX@S`hoxR  rRe RQj`Q#Q (08P@+HPX`P`7hxP`O@N$@@N-ЉKOuK 3(@b8J@9H`bXJ`hxISv`I`0wIjwHvw@H@xG }(x8G@HyX G`h`yxFy`F zF>VdEi`E E(i8 E@HiXD`h{x`D@} DCR`C@C  Pg B !( 0h8  B@ 3H PjX A` Jh @|x A V } `A a ~  A m  @ =  `@ t  @ {( 8 ?@ `H ppX `?` lh 0ex  ?     ` Z   > x Pk >  Pn @=@ H pX Z` h x `Z  `  Y    H P [` @   B  B  B  B  B0 8 BP X Bp x B   B  B  BB (B@HB`hBBBBBnB Q(y0 @_HnPiXd`whpfxrnBnBBBBB B0B@BPB`BpB5-NFia{@PB`BpBBH(8s (@H`hs( 80 H(@( 0 8 @HPX`!h"p&x'6:=>BDQRZ\_goqrx (Y028N#ApAAx$*`*PX`hpx   % (()0*8+@,H-P.X/`0h1p3x45789;<?@ACEFGHIJKLMO P(S0T8U@VHWPXX[`]h^p`xabcdefhijklmnpqrstuvw yHHHtH5%@%h%h% h%h%h%h%h%hp%ڋh`%ҋh P%ʋh @%‹h 0%h %h %h%h%h%h%h%h%zh%rh%jh%bhp%Zh`%RhP%Jh@%Bh0%:h %2h%*h%"h%h %h!% h"%h#%h$%h%%h&%h'p%ڊh(`%Ҋh)P%ʊh*@%Šh+0%h, %h-%h.%h/%h0%h1%h2%h3%zh4%rh5%jh6%bh7p%Zh8`%Rh9P%Jh:@%Bh;0%:h< %2h=%*h>%"h?%h@%hA% hB%hC%hD%hE%hF%hGp%ډhH`%҉hIP%ʉhJ@%‰hK0%hL %hM%hN%hO%hP%hQ%hR%hS%zhT%rhU%jhV%bhWp%ZhX`%RhYP%JhZ@H-8H z1H5iH}HMDH=.z!Hu ÃHcSHL?2HxE1LE1E1\H>HtLIH(LI\HtHx\MtLk\MtL^\H=HtHB\H=3HtH#&\H=HtH \H=۬HtHˬ[H=ϬHtH[H=HtH[MLE1[E1E11E1E11E1E1E1E1E1HX[LP[L%M1E1E11H)[1E1bE1E11E1`1E1HHDLH5rxH811錊LE1Z[ID$HLE1Zy[H H5yH9"QaHۆH5yH:3aLtZE1dLd$Le1TgLE1PZJA}hA|iE1OhA|huEWA~woE<$IHH9E|A_tADL$+L$DL$j0L$IAD$;jADL$L$DL$E;j0L$IAD$LA}gA|.iL$H|$xD$PL$L酕ID$(LE1默HL[]A\A]鱙18LL#šLLH|UtI|$(It$銤LLH#I魤LLLBUvLLL_#cE1H)It LE1اHEHHM HpH9HLH9t E tH9/Hu(HHEރLH"HELHTIMijH~H5rH8H s~H5rH9A鷃Af1HE1QALMHmAE1E1E1߷ME1öE1ŶE1ķHmAE1E1頷HmMIE1E11鋅E1E11~E1vE1E1E11f1飅}E11K1DE1<HL$nHS}H5\pE1H8iH|$ PH|$PՇH(HL$D$ |$HC(u H }HK 饼IALHL$H|H5oE1H8HIPLAPHL$-H{|H5oE1H8鞊E1閊HOLO遊HE1Oq1HL$MH|H5$oE1H81验E1颌HOLO鍌HE1O}LE1tO}LE1_O؍ HL$oH{H5nE1H8HOLO֎E1ΎLE1N龎LL LHLL¼LHLTHT$PLLHt$@蟓LHLmÒH8 L1[]A\A]A^A_L-H|$p{铒H$(n{$+H$S{D$pXH|$(>{;H$+{$H{H${$בH|$z鷑H?zZH9wgIvHL9IrN L9HH9Ѓ 魽HW1HJ1H+L`L\$A ApIc L9wIƤ~I9Ѓ]H#NJH9ЃDI TI9Ѓ +!HT$LHH$y$魿1ɺ1L藷釿H?Bv(Hw0H饼Hy郿H醼 |H$XyD$`HLEy-Ll$@HLLmL9 H\$LLHItkIH|$x/D D$LHDƁA 4$t$ ̭uH|$@xD$H|$8xD$LH芭3H|$hzxD$@%A $LHL\$LT$LT$L\$LHL\$LT$EHM(LT$L\$@H)H^I9tI9I9H9LT$H|$0L$wL$LT$LHL\$LT$LEHM(LT$L\$1H\$`L\$MLfLHHfoL$LT$L$D$`0T$h\$xFELT$L\$utD$`ukH$HT$xE1H|AĨuLT$L\$vD$`LT$L\$uLT$HL\$vLT$L\$H]HM(1HLT$L$g(D$`L$LT$uH$vD$`LT$L$>LT$HL$_vL$LT$111HT$ H_KHT$H4$~H4$HT$HItZH\$LHIxD$uILLHHAuI~(uAu'LuD$LH衪D$HLHT$(SHHD$8VKIHH|$(HTHT$(HH!KHL$(HHT$ IMHLLHD$(u;LD$(uLD$ LE1tLD$ Lt8LtHT$Hͩ0HT$HIL}(LuHT$ IM1LLSIHT$ 1MLL:LhtL]tyH$H|IIL$eH|$`/tH$tD$`H$H6IH}(qI\$H5sHU HH9HMH9t E t?H9OLU(ItL.D]H]AE D]H$HH}( H$HuH$HHH$HH$HSH#NJJHZH9tJILIA_JIL9vtHL$颋HE1EbHELELEEHt$xHt$ގ1H|$xrD$P鐓H []A\A]A^A_C$H$ur$(H<$^r H|$PNr>Lt$PLHLvt#L鑑H$r$鷒LHLLHLYHT$0LLHt$ 贉LLLd鶒A $@I?LH [L]A\A]A^A_T#LqfH$xq$CH|$`q#H L1[]A\A]A^A_"IƤ~I9҃IrN L9wHH9҃ DL贮7H|$pFHL该H|$@pKH|$hpD$@.H5fpI9w I(H$0L$Ƅ$0$0L$IG(uWH5!pAIw 雒H$pD$p騔H$p$xH|$po酔AOILHǤ镖L$IALxUHC1DŽ$H$I9HLcHNAOLIII9|MMuL|$PLt$ LHLML $IL$uMLHt$ LLMLLHhLMLLHHL $IEu t$ dD$PuH|$xnD$Pu H|$PnLLHH$`XH|$(zn$LhnޕI]xEcI9Ѓ`I#NJI9ЃGH$n$郙H|$ncHD$KHmbH$m$'H$m$<H<$m5H|$xmD$P-LLHMHT$0LHHt$ >H\$PLLH膆t(ITA@H?HHƘLL 鱘H|$Pl願  LLD$TLl H|$(l$H(HL$D$|$HE(u HmlHE EV3HL$œHkH5^E1H8BH0?L(?-E t@L9LHLD$DALD$ȝH([]A\A]A^A_A#LHLD$=LD$H]xEcL9EAAH#NJL9EAAԝHv tL9LH@遞LHqH5HkH9w rH(HL$D$ |$HC(uHkHC <4Ha t5H9xLH&@hE t&H9LH@LH*<LHnX[]A\A]A^A_aHL$HiH5\E1H8@H^=LV=+H|$AN$L1IHweAuO$IE t5L9LHLD$B?LD$H([]A\A]A^A_LHLD$F LD$$ t"L9ͤLH>齤H鋤LH 餤I]xEcI9EAA骣I#NJI9EAA鎣'HL$HhH5[E1H8E1 H<L<HE1< L9LH">I]xEcI9EAAI#NJI9EAA̧E teL96LHLD$=LD$H([]A\A]A^A_LL$AOL1IHw:AuOILHLD$ LD$LH  =HL$hHMgH5VZE1H8cH:L:ӪHL$HgH5ZE1H83H:L:OHL$~HfH5YE1H8HL:LD: HL$IH~fH5YE1H8ɰH:L9鴰LLH<E1lHL$HfH5'YE1H84<LE19,H9L9HE191sHLH[]A\A]Ht$'HeH5nZH8E1gLd$vH$9L9HMt$LfM\$ IvL9ILL9t A$ tL92It$(JID$LL7 ]Mt$LL:vHL$UHdH5WE1H8ջHs8Lk8IEA&LUeLHE鬽I]xEcM9EAAH#NJL9EAAмH|$hdD$@lH|$8dD$lH|$@dOLH辙%Lt$@LLL}t$M龻IM9EAA FLLn I TM9EAA L9=D$!LL$A LD$LLLH2EqA$fH]M|$H}(DT$L\$.HT$LL\$DT$$L\$DT$MNH|$ c=H|$HcD$ HT$LL\$DT$8DT$L\$HT$HL\$DT$DT$L\$pHT$L[8A$M\$(FHT$HL\$DT$58EH}(DT$L\$rHL$HbH5%UE1H827H5L5"H|$ bLL舗ǿH$ub$鼿H$Zb鱿H|$xJbD$P驿H|$P5b顿H|$H%bD$ 陿H UhH?H9u H@NMH8LL-OqIdIHMIMI@L|$0@LL;LL)$L|$0hfo $)L$@HT$ H|6GHT$ H5HH TH9EAA H(HL$D$8|$HC(FH`HC 6H $H_H5S1H8L%`I$LH1m33HL$H_H5RE1H8RH03L(3=LHLeyAHL$HO_H5XRE1H8ejH2L2UHl$HHHyLL谔  T$LLA ut$ 茔H|$|_H|$8l_D$A E AE$,H$L7Hkt$0L4H|$$H$_H$^$1LH$^H $HT$8LLyr6$,H$Lz!$,H$L\LN^ H$;^$H$ ^$LH LHKHD$1H]H5RE1H:* Ht$Ht$H\H5QE1H:GLk0RLE1[0Bu H(H(L'0L0L0L 0LE1/L/L/H/L/H/L/{L/LE1/L/LE1/LE1q/|Ld/L\/gLE1L/.rHH1/E1LH!/?AtBtNAEtPt]LE1.AtPt\LE1.'I([AL[I}([AEL[I([AL[E1H}(oULo]L\$PH|$XH|$0I\$L$0I\$LT$HT$8\$HLL$L\$HH9H|$Lʾ ~E vˀEE1HrN I9wIM9HHH 1lHƤ~L9HHHH|$1ɺDR1&H|$1LL$HNgmH\$!H\$LL$EM|$ID$(J|1ɺH|$HhD[]A\A]A^A_їM'LLl$LLt$LIT$tE]H|$AM)D\$AA MEE]@IT$(ID$H|V%1=At 11bH|$HhD[]A\A]A^A_ 1L/,L',LE1,L ,L,HX;H|$(X$L+L+L+L+LE1+DT$Et6LLHqDt$u#HLH[]A\A]A^A_qLLHDt$Jt$H1[H1]A\A]A^A_LE1+L+yLE1+L*L*L*jL%WI$L%xWI$L%gWI$7LE1*L*LE1* Lx*LE1h*L[*rLE1K*IL>*L6*4LE1&*L*LE1 *L)L)LE1)rL)L)]LE1)ML)L)8LE1)hL)L)SLE1u)CLh)L`).LE1P)LC)L;) L.)LE1)L)L )L(LE1(L(LE1(LE1(L(L(LE1(QL(DH1[]A\Lu(LE1e( LX(LP(Ld$L>(L6(MSL%( cD$u D$MLDHT$LH*nUHUAU(IuH$TH$T$H|$T~H$|T$[H$aT8L\$A QLL$MA =LT$IA )H$T$H$ SH$HS$ LL$LT$0LL$H9HT$LLlD$,HD$ Hl$8LLd$HH\$@LL|$MLHHHHT$MLHHHl$ LLl$,tiD$ tMLHHH]HT$MLHHg됺1H$ HT$H$ D$LT$0IH LH\$@Mo$Hl$8Io$H$D$ H$H$($8[LH]A\A]A^Y[L]A\A]A^kAM H3R Hؾ1HLaHH1I41L$L${LE1$L$L$jLE1$ZL$L$ELE1$5Lz$Lr$ LE1b$LU$LM$LE1=$L0$L($LE1$/L $"LE1#L#L#,1yL# LE1#LE1#L#y111L$$$L$H1H|$S#EtGtSH<$>#1H|$-#xLoOH5DI;H|$#H}( PEHOHH OH5xEH9@H H"LE1"#LE1{"H(HL$D$|$HC(uHDOHC ' u H5$OH9w CfEE t`H9HT$ H=$I|HH(HL$ D$ +|$ HE(uLNL] HT$ H1s1lAuH|$8NDD$HAHD$LjNHD$HD$H|$8PND$HD$HD$L2NHD$h1HLt$0LLLAgfoqfo%yHT$(H$H$L|$$H|$$$D$$HD$(Ƅ$l3LH52GHfD$0LD$HHt$XJ| D$H|$XEMD$0H|$0/Mt$1ɺHH$MD$`H|$L}1HTLL$TtDHT$MLHH:D\$$E $0HKLK(I|u AH|$MLHHHL$MLH$LD$` D$0 t$$LH߁%1DID$LE1E1tLL_M;tjG_<IvH#NJE1H9HAIH)HL LE1wLoLE1_LWHOqE1uLE17eL*L"PLE1tE1lE1dLHOLE1AE19E11LHLLE1LE1L~LvE1|LE1^lLQLIMt L<ZE1RzE1E1; H$H޹ HHƄ$>fDŽ$ ;\$T\$T..- E1 E1E1 L$THI$H$IL$TE1EZ>AAAD$UD8D8$AH$D9BLIDIA?B فL$TLH4tAtAw,AAiAASAt(AvAtEAw,AA%AAAt#Ƅ$ AAAAIcƄ<r \$T'H$H$PL$TLG*[L]LA\A]A^|L¾L|u[L]LA\A]A^`HHFH5^>E1H8:E1LE1YE1LE1A E1LE1)rOIMVIstCIBL +FH5,>II9P#Lk(H;k u fHC1C A $K1E1H9HMI9tE t,I9rLH|$H|$I $OLH|$H|$GHbPIMZ1]A\Z1]A\Z1]A\1 H)E H]E L1;14LL1ָIMifH|$(EL\$IH $HLLOM5H-1E^H<1H5BH}HM)H=<AHu Ӷ莵H ?DH5=H9hAC E1 LDH5=I8A1=!H CH5<H9$1 !!LHy"LD"H|$(wD$"PSH9Dn1H;H5AH;H )H=<KH3 ޵虴SHCU1H;H5AH;贶H )H=<H3 莵IH|$(LD$ I9K 1HHHHD$8HL$HIHT$MLHz"L\$ H|$(IH|$HLL\$7$L|$H1IILݴLD$LLJL=HM""Ld$H|$HHX[K&]A\A]A^A_#L 1HNLLT$耴HL$HMHt$ILH!H|$(L\$ CHH#I1L9IH)HILH)I9&(IILL9"'HL 'LLHIHE1LAE1M9I#NJAE1MJTHL9{&E1H9AALL)_&HH9v1H H9wI8$LA'H$'I$AII9$O4#LYIHHLHHH\$R1LLLHD$HLLLH)HD$Hl$H1HI,/H袲H<$LLtLD$tBLLL׳H1HjH|$LL;LtZ@#L@LE1@H<$@L&Lv@H<$l@H$;&LV@N@1DH? u1\HI>IL"HI1W&HE1HL)L)IDHL)I9M)MMLI)L9 L)HHH)H9UL)HI H)H9{HH@I1H&HD$H)HHH HD$I)HHH cHD$I)HH 4HD$I)HH2 I)Ig =H!HH5HH|$0>QE1I I&DHD$XHT$HMLH|(HLH|*H׋L$TLHHD$XHL$XI9uH|$HLLL$xLD$pL\$hLT$`(LT$`LL$xHD$XLD$pL\$hLHLHIH|*LI|(IxMHH)H)DHHD$XHD$XI9uHT$HE1H H{IHH Ht*HH)Ht+HLLH)DHM9u&1)A?)HD$H)HHH'+HD$I)HIHH+'X*HD$I)HH(++HD$I)HHG&u*I)I(X+H.HY.H-Id-E114H<#4HB<)LE1)H1H|^L1:H5/:H8t)LOIHHED#PHLHMEH LHPH=O51t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$ثHATMUHHLD$ D$ aD$ A $AtLHpH]A\AWHHL=jAVIHcAUILATIUSH8HHt$HHsH #HL$HMt9IvLu0IH=)L!LGL=L !MFLD$DLLAׅu1'H|$DLAׅtMVE1LT$L9|$vTHD$KTK|JLJ4HT$(HHL$ Ht$ H|$(HfHnfH:"CTIDLLd$LAԅgM^E1L\$L9d$v}OtK|HHO|Lt$Ot=H|$HHfHn(HHLfH:"HHLfHnCLfH:"CDI|H8[]A\A]A^A_AWMMAVHIAUIATIUSHhI9wpIwHLLNLLD$XLLLLT$9Ld$HMHLJ H9IXHH\$HHI)HT$LL9M9K4 1HLT$H MMLLHHLT$tCH|$KHLdHL$1HMILLHHHHu01K1HLT$H MLLH|J;HLHHL$LLT$HLHL\$@HDI)LL$LHHL$HLCLNT LD$8LL|$LHD$0HDLT$(Ht$ oHT$0L|$HLD$8O|=HLHT$(MLL\$H1HLL$HT$ K4ML\$(H Ht$@HHLD$(H|$HHT$LLHT$HT$HLWHL$1HLL$ILLHHILL$IHHQHT$HLvHT$HLHh[]A\A]A^A_AWWAVAUATIUHSHhHN(HT$HVH|$8H$`( ~FD$/L$(HT$LL|$p(%fH:"F H$`H$H$H\$@H$(LH$XHƄ$0Ƅ$0HD$8Ƅ$0$$$$$8$HƄ$PLD$(5t$IfIn)$`fH:"l$$ƢLl$pIɚ;wkI'w%IcwI  II?BwI III?zZM9wRHvHI9wI TM9Ѓ IrN M9wtIM9Ѓ ^Ic M9w;Ho#I9wHƤ~L9Ѓ*H]xEcL9ЃI#NJM9ЃAH} H53A)H^CIcL,H9HLH9t#E tH9~LH LHH}(H$`LHt$ YeHEHHMILm$HE1HXLI LAHt$(=VDŽ$D(SD$dHLT$ |$HH$HD$HHD)D$p-D]A/T$/AHD$H)ED ڈULXIcLIOH;Fu@F1IA M9AAD}(L|$I9I_L蝛IH E11L-uIHL蚜I}H;pIH=jImH9uIH=oIRH9zI,H=tI7H9I!H=yIH9I&H=~IH9I'H=ILvI@I I;I;Cu@ACHA I9AADu,1HH[]A\A]A^A_f.L9HH5)H4@L9H|@H5)H@H59H@L)HL@L9H<@H5)H@L9H@H5)HL=HH51HAE(E,1A|AqE1iA^ASAHLd$0I9H|$(H9:_H|$H9H|$H9L,$I9%1yHuHE ֗Ht'PH-#H5H}1H#H5H8臗HuL#H5I8輕_HuH-s#H5H}蓕LH(THDL .#H5oI9O~r>HL1ORFfDAV1H 5CAUIHHATHUSHPH-"LL$LD$HD$Hl$跓Ld$I9qH=F1HT$ ~H|$ HH|$H/Lt$Ld$MI~H;&H9H芗I~Hu/#LLL+IHPL[]A\A]A^fLnHHLHLHI HPL[]A\A]A^f[Ld$Lt$M2LD$ xIHjH\$ H1I}HL$ H茐t$ L67I|$H5&H9tj&H H5E1H8@H;=} L LLL贡HPI[]LA\A]A^D$ I9uM9nu IMLzIHlIvHxHT$ ,:t$ LFGH5臕XINH=H5U1HQH?试E1H5LHH6IHtHLHSH#HD$HH?HH=C1HT$艒HD$HtH"ff.AWAVAUATAUSHG AAA @HoLo0H}IHHH]AA|-H <9A}L uA<91DALILDLD#DA_uPAD$~H@}LeL9uA$HL[]A\A]A^A_AA|]H<:A?A}<ӑAHtrAA}!LA: Ht6AA|LIA;H9A1ADL$0L$DL$藑L$0HEHL9ILoHHoH}ڒIHAĐH`HA|-wfH5}>u$HAHH9HH]Au.A|-wL,A8tH92AA|]!HHAA|mFMAE|]EfA_uuAw~E$IHH9uz規=AA|]臏AMHR:FE H\LoHlH|$9ڕH|$G AA}h鑔邔@AWH'AVAUIATUHH@D$ H9IHIT$HAD$0H5ʇfIT$@fo HXLIHMt$L|$ AD$ foID$HT$IHL$ LHt$(LH|$0LAL$0LD$8)T$ t$ AuJHt$ u'H@L]A\A]A^A_10IH%LE1̾LLOt$ @HHH9u7ˎHt?HPHfo @0fH@HP@@ H0H10Hu4/ffoxHiHXLIHHHGHWHO Hw(ff.@AWAVAUIATUSHH8HGHGHT$D6HL$A+1A-P ߀NSItEW1E1E1@HEt_ED߀EA.#辎ELCDQD[MuMuA0IHEufDH\$ MM L|$ _Ht$(I Hc3AHT$(:IEH\$ IM)HXIc M9[HNgmI}H9sHH9H_Cy 5LHIIK4I wI)yIH5M] I9IML9I](MGM}DJ4MHI9A$I0HHI9E4$L IA0IcJIHI9A$LI0HN4@L6I9A$K I0HL HLtgE1I9KAO$A$Md$0HHPHt:AE1I9LAAO4AMf0LcKQHD9u@MGIImH\Hɚ;H'HckH WHH\Hl]1M]D[IECAD[HHDvIc H)I9LCIM9IMMLI9M)MMafIM)HuHc I9I}[fI?zZL9HvHH9HrN H9II9HHH HLTJlUHImHT$LHt$iH8[]A\A]A^A_f.I D[Hf.AADAA.DcCDaIMEHlDvH1H?B H1HHHIc L9Io#L9IƤ~I9HHHHHHH\$ HT$LHI TI9HHH HHHtk@NDDCAAA1DKAANL={JHt$ H{uIHOA<$%LT$Lt$ M:McZ(M)L|$M)M91LAHIIIHpIDcAANyCAmAEMt@Am[]A\A]A^H!ELM(LUMvH#NJIH{H9AI9IEH#NJIQHBH9AIAIv~EtyH#NJIYH{H9AVIyIvPEtKH#NJI LYI9MH#NJLEMKTI9u韆@LEKTL Iɚ;wCI'IcI IpHLTVLUM;$zDI?zZM9%HvHI9HrN AI9wIM9AEI @M@KIzIH@ "@Iu0HIIr*MLIMHLIAL9rcL.H1At ]AAttfA4HAt lA,H|$CHL[]A\A]L]u MItgItUItCIt1ItIt L[L^H+H.HH+H.HH<+H<.HH +H .HL +L .HL+L.HL9L+L.HD+HD.HT+HT.H|+H|.HL+ HL. LL+(LL.(LT+0LT.0L\+8L\.8H@L9IHj~f.AWAAVAUIATUHSH(HFHHNփt$ L$RHILMH9HLHAHIHH}IH}EA@Aǀ8HHH9]YH <1IIL+UI I9t$ `I9WA L)MuH([]A\A]A^A_LUL](H KtHɚ;H'HcH ҃HL$BH}HL$HmHu(H|$HL$H4HH|$HL$HH6-HxHHAf0.LGHLǾ0IHHT$rHT$HH<:H?B H:H҃)AHH)HIDLA+EA AEDH)y L)A-HDXHxHɚ;H'HcH ҃17 t H~IH{u@A@{Aǀ%@ T@DNaNHH}HH9H҃I?zZL9w?IvHL9IrN L9 HH9҃ Ic L9UHo#H9)IƤ~I9҃uH҃dH}HU(H|ID$AHIH!HH?B HlH҃[H҃J@zHInfinity@HHxhH?zZH9wvHvHH9HrN H9II9҃ A-H@uLvI~ H TH9҃ DHc H9=Io#L9IƤ~I9҃aH҃PsNaNHI TI9҃ %LHHHHxHZ|%H8HA 0H+HxI]xEcI9҃LH#NJH9҃3 HxA+H@uHI]xEcI9҃PH#NJH9҃7HHHHx%LIcLH9qH1HId I0HֈGH9UH1HI]xEcI0HֈGH99H1HIo#I0HֈGH9H1HIƤ~I0HֈGH9H1HI@zZI0HֈGH9H1HIrN I0HֈGH9uH1HII0HֈGH9AH1HIvHI0HֈGH9H1HI TI0HֈGH9HAʚ;1HI0HֈGH9HA1HI0HֈGH9HA1HI0HֈGH9HLGI4ׂCIHDR0DHi@BH)I9HIxICxqZ| HIHLiڠDR0EL)H9HLOIKY8m4IH DZ0DHi'H)I9HMAIS㥛 HIHHiDZ0EH)I9HIxI(\(HIHDZ0L EOIL)H9HLGIIHDJ0DHHc1H HID$(Ht$ LL~H8L[]A\A]A^A_H?BV HwHHHH Ht$HnI9+rfI*Y,af/,a rIH,LWM9qH5I9IMH~"LLLT$@IL$@LT$MMF\AH#NJLL$LMMHl$HD$MHML$@IMAHA@IHIHIIIO@LH)HHHtlHt@HtHH!H!qHHHQHHH!HqHHHQHHH!HpHHHQHL9HLM@HH!HHLAHHHLI HhHHIHHH!HHHHHIHI`HIHHIPHL9uIHHu2HL$H\$tI1II#NJL96I1dMuM9woKMLMIMET$IL$@Ml$0ID$ AD T$ET$JtHɚ;H'CHc(H IUHH4HE1LDxA|$AAIAHHgMA|LktMHxLcMyC|MMiMK|IIuI?IgAJ HIM9ug t'L5H5E1I>0Z'HH-+H5E1H}ZHE18ff1LVIHu01HLVIHuA H1II1HIHtLI@HHH?øH-@AWIAVAUIATIUSHLN(H~I|HHHNHH6P^Cy HHHH?HH)LNSL9tHH5Mt$ H9HML9A$ dL9HM\$(LwI_Cy 5IHHHLJ4AH)LO4HH)MLSH ?HHHHHHKY8m4LHHLH Li'L)HHLMHvHHLHD1!UEEE$AAE E$A~EImI\$fH:"AD$H[]A\A]A^A_HH HrHHBzՔLHHLHLiL)HwJH vvH H͕PMB LI@zZHHLH*LL)@HbHlH7IƤ~L1IH H$ LIvHHHLH$LL)VfDHLHHLHL1LfjH\$ @fDAWfIAVIAUATMUHSHfo#H$H$D$@0HD$hD$0HT$8D$L$HD$XL$D$(H9>IL9LL$MLLHD$u@A $D$@ ?D$>HĨ[]A\A]A^A_MNMULD$pL LD$ OL\$pM;?LL$ LLH0DD$ Ee>D$@j>>>>AWfMMAVAUIATIUHSHD2fo `"H$|$,HD$XD$00$D D$8L$HHQI}(It$IL$(H|H\IL$I+MHMMEM+D$MxL)HL$ MH|$0LLLL\$LL$H|$GLT$L\$IULd$H)H\$HI92>H5HE H9HMH9tE =H95MMIIt$HM(LFHpI}(ML$(1I#NJIH?K?HJILFHtH#NJHN,HKiHIpJ)IMtJI#NJHLFIIHHHIHtLIKHHJIIsH~H<H|9LokH5ߴHU EH9HMH9t IcI H{LNlGLmM\L9A!HLMHHHIvH|1I9PAMVL\$8Mv(ɐK|Lt$0L$0LH\$(HHtH|L$bHHuE1PL[HJN L9IsxADMCff.UHHSM_I#NJE1H HAL9D HILPHJH#NJLHI9AH9@A EElHOILHHJH#NJLLI9H9AD DӄGHOIHXHJI#NJHLH9@L9AD D@ HOItQH#NJHv8uLL MMI9M9L HE1L9uE1I9rL[]f1MH9vIN IhNN H9sJTIJTI9sJJIL9tIv8uLHIsI9"A[]LIv8uLHOIIv8uLHOIIv8uLHOIIAL HI9uff.@I#NJ1HuHHH9vEtHHPL9AtHAfAUMATIUHLLH]A\A]銆f.AUIATMUHHu/ u'MMHLLH]A\A]:MLHHT$H4$H4$HT$t H]A\A] 6HMH]A\A] jff.fu u t  uHHHHH=ɚ;vPH?zZH9Hc H9Ho#H9!I]xEcI9҃H='wHcw H ҃H=҃H=?Bw H=҃º H=wH=҃IvHL9!H TH9҃ |H#NJH9҃c@SHBIHH1AHHtIILV(L^KDHL9v H~[LI)1[K4HHLL)I)I$IH1HHvIDK˘HH![AUIATI1UHHxFMH}(HE шMH7HGHHE8LLH]A\A]鵃H?H9#H޺fAUIATIUHSHH uH5H9w s$HHM(EHEHHAHEH1Hɚ;w:H'wxHcH HLLHHEH[]A\A]H?zZH9w}HvHH9vUHrN H9HH9Ѓ H?B HwHoH TH9Ѓ VIc L9wcIo#L9w;HƤ~H9ЃHHI]xEcI9ЃI#NJI9ЃH?H9tHۃ[AVH GAUATUHHHHҋH`L-׎HD$D$ Ll$ Ll$P1LL$(LD$ZYJLd$M9iLt$ H=²1LP(H|$ HH|$Ld$H/AoL$H|$)L$ AoT$ )T$0Ao\$0)\$@L9H}L5L9HELl$I}L9AIELIH7M\$HAD$0ffo%yM\$@HL$ IUAD$ HuI|$ID$LD$Ad$0HmtwImt}t$H|$藇HXL]A\A]A^Ld$ LIt$H|$L9T/'D$DLd$H|LvL#LEALHL;Ld$HH^LMMAtLLLIHL/IQH51I:H_E1H-IP1E1H5SH}I|$H5H9C5&HH5~E1H:~LE1B_nLd$HD$HHcH(SLd$S%@AVAUMATIUHSH>Lr@TKL9qrHEH HH)I9[HVH^(H|LFLNLL)II9-HxeLLrMt$I|$1I|$HH9}HEHPH+UH9A MHLHL[]A\A]A^h}LLLL)HHMt$U$HLǽt?It$I|$($H$L{I|$H;}cHɃ@FI|$L1L{THMLH4$HT$oH4$Hl$t)H[]A\A]A^HLL[]A\A]A^ItEtHLL[]A\A]A^gAWfAVIAUIATIUHSHXDI}M](D$ 0HD$PDD2HJD$(IVALL$fo "HD$HH9Hֈ\$HNL$8I|H4$8MMII)M+NMM9H9}IvHH)HI9H9H52HM H9HMH9tE %H9=MNMM9H5I|$ I9IMH9tA$ %H9h%IMF(IUIu(Mt$(IH}(H$H1HHIEHH5Lm H9HMI9t I9_%H]H|Hɚ;8H'Hc6H EAHIcHEHLd$LHLLiA4$HIl$@t$ A4$H|$MLLHLL$L\$!E$ML\$LL$AEAA^H|$HhLʾ[]A\A]A^A_ݨL-vmHLL$ LL\$DD$̯L|$Lt$ D$kH|$Hh[]A\A]A^A_-%I+A @HA HL#Ll$LLAH\$IT$LM)LL$M}AEH\$LL$XEH#NJL9HHHAA5A~AUATUHtOHFIHIt&H5sH!tUH5sHt2LHL]A\A]HrH5fH:]A\A]]LLA\A]XM]LLA\A]vAWAVAUATIUH1SHhH=Lt$0LD=!L|$0MI/H}LuL9 HEHpH94I$Ml$DuE t$HuA!L聭1AI,$tfHmttAw;L%=uIcL@1E@Hh[]A\A]A^A_ADIcL4;L4$$Hm4$uH4$4$yAAEEDE@DAAL_H}LstmHLLuyHH1Hh[]A\A]A^A_A AAtZLiuÃHoHH5oH9u8DkAAO,HLLVHlDKAwL&suH}H5oH9iH5"H!H5@lHUIHLHH=rWxLH$;BH<$AD$HH5kD$,HHH=jrLHwHIHD$AMMl$LYwHHH=&r1THD$HFLLD$,vTHUHL$HEHt$HT$HQLH~HLL$LT$H|$MQ PAE|$,:HjmH9$L;d$Ld$H,$Ml$HmHLgLNqxH mHjC$Hf.zf. zgueIHAO,LHH=pLH[@H,$HTmH}(EmEH-elHEI$H,$oIH>fUSHHH=HHeH95H=JH;5H=/H;5H=H;5H=H;5H=H;5H=HfH H8H;pu@hHKuQ 1H[]@H9HɍHٍH1!Չ)fDH lH`H|$H|$SiH=jH5BhH?KfDHH=$ZH;5/H=)?H;54H=.$H;59H=3 H;5>H=8H;5CH==H;5HH=BH5H H8H;pu@@HW#uHiHHfHiHHHyH HH)HY|@HilH|$ZH|$`ATIfUHxfo HIyHD$pD$0HoHD$8D$L$(HHH IfoHXLIHLd$HT$PHHL$XHbHL$@Ht$`LH|$hL)T$@DD$A7HD$ HD$AfAt5HuHHx]A\H4HH"HFfDAWIfAVAUATMULSHH(LRLRMfoL$H$ IRIxEH,H$ fHnfI:"PD$`0LH$D$00HL$XH$HDŽ$DŽ$D$L$L$hD$xL$8D$H)$AvH|$`LH|$ڀH$LHD$$H|$DŽ$.Ht$LH舀*LtHt$L$HHMIL$@HUINAD$ IuI|$ID$LD$AL$09Imt7Hmt:t$L_XHL]A\A]A^L7LHL/'IEtXLLLLgIH[LHUt-HLLgHHL%+]I$JH-]HELI0.`IHff.UHHSHAPHHH]HZ[]ÐHWHGH 7SHHdHHc H9wHC1[H\\H5NH8}[UHHSQHHtHc HH9wH] 1Z[]HtH [H5NH9fAUHATIԺUHSHHHLo(HHLq\HHk HC(H[]A\A]SHHTHHwCP1[HV[H5MH8w[fHcW4HHHff.HcPHc8AVAUATUHSDo,1HH=}ItH $H9AfHnfH:"D$)D$PH|$@MHuMLT$(IK<t1ۃL$`L9\$(H;l$HHh[]A\A]A^A_HL$0Ht$(L1訩HD$8H#NJ1IL@H9w H;L\$8H|$L\$PH|$X"[I~YHHIxYHD$(HH3V.H|$(#Vff.MhI#NJAWIAVMIJ*mHHD*ff.@AWHcH`AVIIAUATUSHLHH,HuH IMMnMJ DLHL4I1II!I!f.HHLHME1H)HAMHIHH"HIILHL)I"IHHI)a H"L Hd H9[ HHHHH)H"HHHHH)H"HIIH)H"H4 M H9 fHnfH:"HI9DLHAЅfIIE1II!I!IIIIH"HILHL)HI"LHHHH)HH"HAIAHHH9KHBHIHHH)HH"HHHHH)HH"HHIIH)IH"HHLH9HIHHH)HH"HHIIH)IH"HILHL)HI"L@@HHHH9[HRLIIIH)IH"HIMIL)II"LILHL)HI"E1LAIIH9fInfHnIH fH:"fI:"S[M9LHsH{LCH#MkE1H)AMIIIIH(HIHLHL)HI(LHHHH)HH(HAIAHH9HIHHH)HH(HHHHH)HH(HHIIH)IH(HHHIH9MHIHHH)HH(HHIIH)IH(HILHL)HI(L@@HH/H9&LIIIH)IH(HIMIL)II(LILHL)HI(E1LAIIHH9v HH)I@HIHH(HHHHH)H(HHHH)+H(HH,HEH9<HHHHH)H(HHHIIH)3H(HH7LHL)I(IL9HfHnfI:" HL9DHH H)HH HHHH H);H HBHH9 HHII H)IH HILH L)I IHu L9GI)?HH H)HH HHIH L)HI LIDIH9HIHH H)HH HHHII H)IH H@H@HIH9UMLHIHH H)HH HIILH L)HI L@@HHH9LIII H)IH HMILH L)HI H(IHHIH(HHH6H-I"HLIHH"HHHoHfH5H)H)H H HHHHH)HH)HH)IBH)H)HH)HZH)IH[]A\A]A^A_IH5{0H t8DHFH=/LH!HFHL$HЅK LD$MDHAЅ' II(HLIaHXH(HHHHH"IHHH"HILH)H)HH)H&H)IH)IrfDHHHIAII!I!@LHME1H)IAMIIIH"HMIMIL)I"LsILHL)I"LIL9hH_HHHIHI)HHL9HH"LHHHH)`H"HsHIIH)-H"HMH9H@HHHHMII)MdHHL9HH(LHHHH)H(HsHIIH)H(HrH9v MhH)`IIIH(HLHIIH)rH(HsILHL)I(LI HL9HHHIHI)II H)IH HILH L)I LIrHuuL9vpHHHH H)rRH IHILH L)I Lr1H9HHSLHH H)sHHI)HxAHI)HHH,IHH"IH6HIGI II"HLIHHHnH@HHHH HE1H)HAH"siHIIHH"IHIII)IH"IILHM)HI"MALEIHI9sdHu_HHIIHH(IHIII)IH(IIMIM)II(MLLuI9rI)LHH H)IIH HILH L)HI LAHEIu H9OH)HD@AWAVAֺAUIATIULSHHHeHIt$ HKMCIH9IcH5OPDLH,΋t$ |)fHnE4$fH:"IAD$MIH I!H!IIIH"HMLIMIL)I"LsILHL)MI"IL\H9HHI9IDIHH)IAIEM\IHIIH(LMILHL)I(LsHHHH)H(HrHu H9gH)_II H)IHIH LLHHH H)rAH Hr)H9vHuHI9HL[]A\A]A^A_HHxHH`H:I"HLIw DAWIH$NAVAUATUSHHHT$HcH\$L$IIH H"L1L!L!HL$Ht$'@HH|$1H)I@H|$IHIH"HIHLHL)HI"LIILHL) I"LH H I9 LHHHH) H"HHHIIH) H"HsIMIL)U I"L MI9fHnHIfH:"ABH9|$M I\E1ITIL LM\IrHAHL)MHDI9`IDHL)I9wGH1L@IM)HLDM9JMMLI)L9YMQfLIHIH(HIHLHL)HI(LHIIH)IH(1HHLvI9mLHHHH)HH(HHIIH)IH(HIMIL)I(LI9v MzL)rHH H)HH HHHH H)HH H@HDIxI9oLHHH H)HH HIIMI L)II L@HDMu I9HL)Lt$ALLMĨL)AHI)HtbHt&IMALIσIL)I1M9vOdO\I,$KlM$LILIσHH)I1M9IMMIσIM)M1M9M9vKlOdH]K\LeILLIσHH)I1M9vODKTMOLIM_LMI˃HI)M1M9vK\KlHKDH+IwLMH΃HI)M1I9vO\MLI;I|M IMLIσIL)I1M9%[]A\A]A^A_H|$HFHD$Lt$IMO6OT1IL\$LD$K40KlI\HLMDE1I4HIMALL)MIDI96MI|I)L9vMIE1IALL)MIDI9yHI H)H9vLL|HL)M9N"LFHH|$bE1H)IAH|$IIIIH"HLHIIH)H"HLHL)I"IzM98H/LHIIH)H"HIMIL)PI"I]LHM)I"MH`M9WN Hl$LNLH;l$uIH\$HD$H\$M9Ht H=Y*H5R*H)HH?HHHtHHtfD=*u+UH=Ht H=~ |d)]wAWAVAUATUSQHFH wHHH r=)HlHUHF|H)L%L-It$`MZ`H~LLN(Mk@H5PH=)IL)L )L-w)2Hc)H}I$H5H7)Hq}L=?L5LL= L= L=8L=lw7}H=] Xw#}H=iDw}H=0w|HHyyIH|L=xH=g HL4u|H= LLu|LH=@xHH|H50HuIHV|HLH"1H5 ,uHH|[H5Ht7At D[HV=|C(E1ff.ATUSHG HE1H-ikH uEH}tZHuHpHHtn{uD eH mH{H/H5AH:"lD[]A\H H5<AH9kff.ATUHQH~H5nH9uzH9-BtRH9-1tIH9- t@HEH= HkHIM{LHHZ]A\H1HHz@,nyH#H5H8uaH@L[]A\A]A^HyH5oH9 ![SsHH5E1H:WHE1#LLE1ff.HH@Gt HcHHHfGt HsHH7HfG t HSHHHfU1H SHHHHHH- LD$Hl$UtcHt$H9t]H~LRL9u#HH{puZHHH[]LYKrH[H5dH8tV1HD$HHtٷHt$H{HDu)HWHG(H|tHOHOHH9N@@1ff.@Gt H#HHHfGt HHHHfGt HHHHfU1H fSHHHHGHH-LD$Hl$kTtcHt$H9t]H~LL9u#HH{ptZHeHH[]LrXpHH5H8U1KHD$HHtiHt$HHDpHWHG(H|tHOHOHH9N@@1ff.GuHW0HG@H|t HsHHHfAT1H SHHHHHL%YLD$D$Ld$"SHD$L9t\HxH5H9urH=IHtYHt$HxHL$HVHsqt$H|$u$HL[A\HD$HHtLE1VuHVH5_E1H:lSf.AWIAVAUATIUHSHH HNHV(H|oH5EHH{H{IIHHNHH;EoLl$ }, HLD$DHofoLfL$L$L$L$Ƅ$0L$Ƅ$0L$Ƅ$0L$D$P0L\$x$$$$$$L$XD$hL9PnHEHT$LD$LLH|$LKAu)M_IG(J|tHt$H<$LKm(HT$0LLHt$ l$HVLLL$l$lm$mmD$P[llH []A\A]A^A_LtH L11[1]A\A]A^A_H LL[]A\A]A^A_ uHmHD$?ilAWIfAVAUIATUHSHH8 foIH$0H$0Ƅ$0H$H$0HH|$hH$H$D$p0D$@0H|$$$L$x$L$HD$X,%mHT$Ht$0H|$8[KHL$0IH HcAMt$MELt$0Mm  mMO(LLD$LAGr$MIGIGH|$ID4$J /HL$EAIE7IL$L$Lt$@LH$H|$ HDŽ$$HH|$HT$ H|$HD$1L$0HHLcHMA|$HO$HI$HLD $IHl$ M$A7LHLHMIL$8L$A7L$M9Ht$MHHHGMLHHHIGMLHLL:Au,$<$aLIH\$Ht$HHHHT$ILHLILLLL:$M@mkjD$p@kkkD$@jjH8 []A\A]A^A_M)HD$pHt$LLHL\$(HD$ Ht$(MHHt$xHt$ HHFAHHL$I)Hk Lk ItIH|$H5RHt$MLL$H.A:$iHD$HEy HHD$HLL$PHKH+ HYMTL9]iHN\HD$HMTL)\$JAWfAVAUATIUHSHHfo UEfoEHT$fopED$P0H$HT$HH)H5HD$xHHLD$ HD$ D$XL$hT$(\$8\HiLML$ILL)Hu/Hi$LLHH$EA $@H[]A\A]A^A_ff.AVIfAUIATIUHSLH`fo FDLD$0HD$`I$0LHD$(D$L$莾LLHLFILLLH)D$jjH`[]A\A]A^DAT1H USHHHHHL%LD$D$Ld$HHD$L9ug۷HD$HHH=^iIHttHt$HxHL$HVHsft$H|$xu?HL[A\HxH5H9tdLuHH5E1H:HLmE1AWIHAVIι AUIATUHSH Ld$ LAD$DI(IwHTHHɚ;H'HcH LVHHI;IWIWHZHHZ9CHI;E`iA},ifoAfL$H$L$L$Ƅ$0L$Ƅ$0H$Ƅ$0L$D$P0LL$x$$$$$$L$XD$hI9hMUH$Ht$uHH5E1H:,;f.AWIAVAUATUHSAPLnIMHFIHH5WH H9HLHHHHH9HHMH9S^LUA I9}lM9l$M\$(KH=1LHLI9t1IHwHtE1HM(J4IYL[H]A\A]A^A_MLE(HEȃEH=H5H]H9HMH] H9z]H1ZL[H]A\A]A^A_&I|uF]19AU1H ATIHHUHcSH8HLL$LD$(D$ H\$z8HL$H9诧HD$HHɚHL$Ht$ LHL$HT$(Ht$Hl$ H=Ll$IH]HT$HuHxLD$ HJIUhH@L8t$ H|$uH8L[]A\A]LE1HyH5H93\\HE1DAWAVAUATUHSH(H $I ЃH~HMl$MHNI9L$HsH=lLM H9HLL9?\It$(LS(LA MHt$LT$I|$HD$N4HT$Lt$HJ4J L9Hɚ;aH'>H?B5A HL5W1E1A H1IIH1HIL HHHtIIID9uLc H1HHKIIA~Lu(L\$IOA HsL9ZEHEÃ]HRL-L} HuL9ILL9&[H訵H4$H(H[]A\A]A^A_N#H(HL¾[]A\A]A^A_HcwxH EAI?zZL9Ic L9ZIo#L9ZHƤ~H9EAAwHEAdHEAQLE1H1IHH1HIH HH!HtIIIM9uHu(HL$IL4L>I|YHEAHvHH9wI TI9EAA HrN AH9II9EAA kfAU1H ATIHHUHSH0H-LL$LD$(D$ Hl$k3YHL$H9蠢HD$HHY躕HL$Ht$ LoYHL$HT$(Ht$Hl$ fYH=Ll$IH4YHT$HuHxLD$ HJIUYH1L)t$ H|$ۻu&H0L]A\A]HyH5H9AXLE1@AWAVAUATUHSH(H $I ЃH~HMl$MHNI9L$HsH=lLM H9HLL9XIt$(LS(H=A LHt$LT$IT$Lt$NHD$L\$HK4J L9Hɚ;XH'Hc:H EAL5bE1E1A H1IIH1HIHLH H1I9AIIE9uMc H1HHJIIA~Lu(H|$IM>A HsL9WUHEӃ]HSL-L} HuL9ILL9VH諰H4$H(H[]A\A]A^A_QH(HL¾[]A\A]A^A_IL$I?zZL9Ic L9VIo#L9VIƤ~I9EAAuH?BA HUHEABLE1H1IIH1HIHLH H1I9uJIIM9uHu(HL$IL4I|HHEAIHvHH9w/I TI9EAA HEA{HrN AH9bII9EAA Fff.@AU1H ATIHHUH3SH8HLL$LD$(D$ H\$J.HL$H9HD$HH虐HL$Ht$ LHL$HT$(Ht$Hl$ H=ȢLl$IHYUHT$HuHxLD$ HJIUhHLt$ H|$躶u'H8L[]A\A]HyH5H9@TLǏE1HE1跏DAWIAVMAUIATIUHuUu|MLLHLuuZLHt>x*LHL]LA\LLA]A^A_鉮 uLLLvLHL]A\A]A^A_è t{@HUHHSHAQ @ u E1ZD[]uDu6HELH uH@uS(H3mAAAH뼐AU1H UATIHHUHSH8HLL$LD$(D$ H\$+HL$H9HD$HH HL$Ht$ LRHL$HT$(Ht$1Hl$ H=-8Ll$IHSHT$HuHxLD$ HJIUhH耍Lxt$ H|$*uH8L[]A\A]LPE1HyH5PH93iRHE1'DAWIAVMAUIATIUHuPMLHLLuYHL2t=y)LHL ]LA\LLA]A^A_ uLLLHLFJ]A\A]A^A_ tvAU1H eATIHHUHSH8HLL$LD$(D$ H\$)HL$H9ߘHD$HHHL$Ht$ LBHL$HT$(Ht$!Hl$ H=(Ll$IHCQHT$HuHxLD$ HJIUhHpLht$ H|$uH8L[]A\A]L@E1HyH5@H93PHE1DAWIAVMAUIATIUHuPMLHLLuYHLt=x)LHL]LA\LLA]A^A_ uLLLHL6H]A\A]A^A_ tvAU1H uATIHHUHSH8HֶLL$LD$(D$ H\$'HL$H9ϖHD$HHHL$Ht$ L2HL$HT$(Ht$Hl$ H= Ll$IHxOHT$HuHxLD$ HJIUhH`LXt$ H|$ uH8L[]A\A]L0E1HyH50H93NHE1DAWIAVMAUIATIUHuvuPMLHLLu`HLt=x)LHL]LA\LLA]A^A_٧ uLLLHL*F u]A\A]A^A_AT1H USHHHHvHL%ɴLD$D$Ld$%HD$L9t\HxH5H9urH=YdIHtYHt$HxHL$HVHsqt$H|$su$HL[A\oHD$HHt荇L胇E1I)uHƳH5ϦE1H:%f.AVAUIATIUHSHHpHRHH|$D$HH|$8HD$H)HL$HD$ HD$(HD$0Hs(fHnHT$PHfH:"CALHD$XI Ht$hLLD$`)D$@tNLt$@H\$\HHLإD$\u"HT$ILLHD$\/D$\%A EHp[]A\A]A^LHH觊uA$u)eLHHʉE uLKIL+ LMLLHEAT1H SHHHHHL%iLD$D$Ld$2#HD$L9t\HxH5H9urH=IHtYHt$HxHL$HVHsqt$H|$u$HL[A\HD$HHt-L#E1&uHfH5oE1H:|#f.AVAUIATIUHSHHpHRHH|$D$HH|$8HD$H)HL$HD$ HD$(HD$0Hs(fHnHT$PHfH:"CALHD$XI!Ht$hLLD$`)D$@tNLt$@H\$\HHLxD$\u"HT$ILLHD$\D$\%A EHp[]A\A]A^LHHGuA$IeLHHfE uELKIL+ LM@AU1H ATIHHUHH0H-LL$LD$(D$ Hl$ \IHL$H9HD$HH8IHL$Ht$ LcIHL$HT$(Ht$BHl$ KIH=>ILl$IHIHT$HuHxLD$ HJIUYH葂L艂t$ H|$;HH0L]A\A]HyH5kH9=nHff.fAVIAUMATIUHSH$u=LL5LtlHLHx)UujHEHEHH9C[]A\A]A^Au@pAMuH}LE(I|uˁApAuA[LH]A\A]A^AM@랐AT1H SHHHHHL%LD$D$Ld$HD$L9t\HxH55H9urH=蔓IHtYHt$HxHL$HVHsqt$H|$裧u$HL[A\蟍HD$HHt轀L賀E1y"uHH5E1H: f.AUIATIUHSHHLLH蓟EuoHU(Hu1H|thH9FHHtoHk H1HHtA|$(ID$tHI+$H+EIHH9LNLLeH[]A\A]HH1[]A\A]HvHt$Ht$uFfU1H SHHHHHH-LD$Hl$tzHt$H9t,H~LBL9u:H{H`H H[]܋HD$HHt2~Ht$L EH4H5=H8M1f уuAHuvuLWL_(HߧK|tZH=٧HȧHDHϧu5uLGLO(HK|t}H5HHDÀHdH\HDfATH=w肐IHt-H@@I|$H Ad$ID$0ID$ 荛LA\AU1H ATIHHUHSH8H6LL$LD$(D$ H\$HL$H9/HD$HHI}HL$Ht$ LHL$HT$(Ht$qHl$ H=mxLl$IHlDHT$HuHxLD$ HJIUhH|L|t$ H|$juH8L[]A\A]L|E1HyH5H93CHE1g|DAWfIAVAUIATMUHSHHfoH$H$D$@0HD$hD$0HT$8L$HD$XL$D$(AIOIw(H|I9#DLt$MMLHHLD$ !E H}LE(I|MWLMLMM)MWIIHL$(Ht$8L\Iɚ;I'IcI EAMcHD$JHI9H|$ H|$LJLD$pLlj$ÍAD AD8VуHL$LL>$[BHLxRu<$uJD$@BBD$B BLLH蜙HĨ[]A\A]A^A_Ã|$LLHqMLLHH ut1LHLSL[(K|uL¾AaALHH LLHZI?B8AA I^IEAKIEA0H?zZI9wjHvHI9AHrN AI9ALD$M9EFAI#NJHHAD$Hc I9@Io#M9@HƤ~L9EAAuff.fAU1H ATIHHUHSH8HLL$LD$(D$ H\$HL$H9HD$HHxHL$Ht$ LbHL$HT$(Ht$AHl$ H==HLl$IH BHT$HuHxLD$ HJIUhHwLwt$ H|$:u'H8L[]A\A]HyH5mH9@rALGwE1HE17wDAWfAVIAUMATIUHSHHfotH$H$D$H$Ƅ$0H$D$P0HT$xD$ 0HL$H$$L$XD$hL$(D$8NA$CI|$TA$ILHt$ID$.H3H9"HHH9EHII)LL$H;u L|$PLLHLm@HLLd$ eHT$LHLH@@L$ MILLL<$)@<@D$PB@O@D$ R@?Hĸ[]A\A]A^A_IIILD$(MHLHL1uLL(LHLXL$LHL@`?HLLZDUHSHHHt$ D$ R T$ ?3H?@uH[]HDUHSHH~ HH9G%u@uH]LU(I|H[]ùHL_(HIHHtHH51MLIJ4IH(H5H} H9HMH9uH]H褑xI|uHE ?H9~t?HM1H^ATIUHSHHTHD$H$tiHɚ;H'kHcH ADBAH|$HIcI<tHcH$1H<$HH?zZH9Hc H9Io#L9wHIƤ~I9EAAPH<$cHI<_>1ۉ؃HH$BI]xEcI9EAAHEAHvHH9>HrN AH9HH9EAA H?Bv&A HHEA~HEAkH#NJH9EAAOSHH tHS(fo CHH[H5WH9w e=AU1H UATIHHUHsSH(HƝILD$H$H $H9}H$HHpH $Ht$L0tlH $HT$Ht$Hl$0=Ll$H}IuU=L%6I$LHvpLnpH(H[]A\A]1HyH5aH90D$DH=ґsIHt}1HpHSLLD$ 螦t$ H|$uLHPL[A\A]H~L$L9kL`0HLH5UE1H8bL`E1HW HHzH+xff.HWHHzH+xff.AUHHATUHHHt$D$t\H=̐rLl$IH/IuHxHL$HU0L(`t$H܆/HL]A\A]E1fu uC~!H(HL$HT$Ht$H<$BdH<$Ht$HT$HL$a/H(fAUIATIUHHuFHVHF(H|t"LHΥHLLH]A\A]~A}$tLHuHt$cHt$.H]A\A]fAV1AUATUHHH5݇H8HL$ HT$(D$ HT$(Ht$H@HT$ Ht$H!Ll$tsH=!,qLt$IHl.IuHxHMIVLD$ Ly^Lq^t$ H%uH8L]A\A]A^LJ^E1LE1:^ATH~IH5H9u I$LA\uHXH5E1H8nff.HyG(Hff.fAV1AUATUHHH5mH8HL$ HT$(D$ HT$(Ht$HHT$ Ht$HLl$tsH=oLt$IH-IuHxHMIVLD$ aL ]L]t$ H赃uH8L]A\A]A^L\E1LE1\AV1AUATUHHH5mH8HL$ HT$(D$ HT$(Ht$HHT$ Ht$HLl$toH=nLt$IH6,IuHxHMIVLD$ !L \L\t$ H赂+H8L]A\A]A^E1LE1[ff.AU1ATIHH5pUH HL$HT$HT$Ht$Lt|HT$HLHl$tcH=mL,$IH\+IuH}1I|$1H[L[H L]A\A]E1HE1ZAU1ATIHH5UH HL$HT$HT$Ht$LthHT$HLHl$tOH=lL,$IH*HxIUHu{HCZL;ZH L]A\A]E1HE1Zff.AUHHATUHHHt$D$GtXH=LWlLl$IH*IuHxHT$ԗLYt$H`)HL]A\A]E1fDHHHHt$t HD$H1DAUHHATUHHHt$D$tXH=kLl$IHm)IuHxHT$脗LXt$HL)HL]A\A]E1fDAV1AUATUHHH5mH8HL$ HT$(D$ HT$(Ht$HHT$ Ht$HLl$tlH=jLt$IH(AVIuHxHL$ L XLXt$ H~t(H8L]A\A]A^E1LE1Wff.@AV1AUATIHH5UHHD$HT$Hl$HH}L-L9xL1hH}Ht=H11KdHH6HLHIHL]A\A]A^éu9u{H;=L}LHILHL$IT$HD$}IHtt$LY}xLE1VhH5҂HHvH60HHtgH1HIMVMtOLL LIH5F*HUH fH5u1HRH9E1E Ic|$8MD$I)L9E(L|uL7hIHHx1k4}H=D$hIH]1HxHL$IT$!t$L|4%LH]3IDAUIH=ATUHHD$ gIHt%HxLHL$ HU ht$ H{u HL]A\A]LE1TfDH ff.ATHUHHH= HD$ IHt"HuHxHT$ st$ H&{u HL]A\LE1LTf.AV1AUATUHHH5|H8HL$ HT$(D$ HT$(Ht$HPHT$ Ht$H1Ll$tsH=1si!H@L]A\A]A^A_LE1ZLLRLLE1ELE1ff.H~H5|H9u HxHQuH[xH5uH8t1ZHxHZATHHHHt$%t&H|$Gu L%_xI$KHLA\E1L%xI$ATHHHHt$ųt*H|$Gr L%wI$AKHLA\E1fATHHHHt$ut4H|$G uL%wI$JHLA\L%wI$E1ATHHSHHHt$tILD$HsIxےt"L%@wI$LLJHH[A\L%vI$L1ATHHHHt$襲t*H|$GcL%vI$!JHLA\E1fATHHHHt$Ut4H|$GuL%_vI$IHLA\L%tvI$E1ATHHHHt$t*H|$GL%uI$qIHLA\E1fATHHSHHHt$衱tILD$HsIxےu"L%uI$LLIHH[A\L%uI$L1ATHHHHt$5tDH|$GuHW0HG@H|tL%/uI$HHLA\L%DuI$E1AUHHATUHHHt$D$跰t\H=xZLl$IHIuHxHL$HU@LHt$HnWHL]A\A]E1fAUHHATUHHHt$D$'t\H=,x7ZLl$IH&IuHxHL$HU0LGt$Ht$HLe[HL]A\A]E1fAUIATIUHHu2HVHF(H|tE1H:ME1fDSHwH1AQHtHHCH[f.QHw1QHtHwHKHZf.UHHHtNH}Ht@H]AVAUIATIUH(D$ *HHHLHt$H1LLd$trLHt$H11Ll$tfH=1N<0Lt$IHIuHxHMIVLD$ 葩LLt$ H5DuH(L]A\A]A^LZLd$LE1HfDAWLAVI1AUIHATUSIHHHyHHLYHLQH)MH(L]A\A]A^LLd$ff.@AWAVIAUIATIUH HD$D$d$HTHH1Ht$HLHt$HL1Ll$L;%CLt$umH=G)L|$IHHMIVIuHxMulLD$]LLt$H=uvH L]A\A]A^A_1Ht$HLyLLLd$MWILL$LLLuLd$Ld$LE1\zAUIATUH#HtSHI0LL-FLLIL9t"Ht&HH11菶LHIL]A\A]E1AWAVAUATL%@UfInHSH(H|$HD$hD$T)L$l"HNHH1HL$hHHT$`H5>m H|$`HG Ht$X%HH Lt$XE1M~ 8 DCPfo\$H$ foL$A$E)$fDŽ$>-A AGD$DUE DD$Ƅ$}tHDEZA A^ fDŽ$ DmEeA 1A^ L$ A6NՀ @  E.A0 ĶEHIBDZA>, A>.A߀E2E Lt$hML$LHr HD$ X L$LݱH HD$ HD$ffo=H$ Ƅ$0HD$Hc H$Lh$$H9$ M$EE1CDSe$ f + HD$@ DŽ$AgAH$H H$H$DLXH(L[]A\A]A^A_uMNAgAGL$ A>NEED$9H$o(Lh$L$ qL$ (AeAfH$AHxHHc H9 LHHDL$(L$L$LLT$Ll$DL$(AEuIUIM(H|$+A%r L$A HT$TLLDL$(LD$dV H$Ll$DL$(I~H$ AI$Ll$xM9KH{D$SM)L$(LD$pHL$SH$IźHD$MKt|$SH$IDL$(Ht$LLT$pAzA<BAA<A=E1HHt$@LHLD$HHL$8LT$0I<HT$(LL\$7LT$0L\$1HL$8LL$H1LD$@H9HT$1I<3I9HT$LHAEcI#d L$L9E]ASՀ"LE1A M$LJE!CDctILH)A.=MM)L)HHC 8L[(A;E1HDŽ$Ld$pLSWH|$XLLL$PLD$HHL$@HT$8LT$7L$IyA>H$Y^HH|$HHt$HT$(HL$0LD$8LL$@SWLL:XZ5LT$(H|$(LEAyMH$  LIAH$"L$ MnI<$L$ AVDWYH$  LI聬EH$A"!AL$ H$9$UH$|9JI}L$LH1L$LDL$(L\$Ll$DL$(THLH|$  @MFA H5H6L肬HD$ Ht"HHD$ HNH H$H|$hH56EHD$Ht"HéHD$HH H$H|$hH55IHt#H舩IHsLp L$IH$@Lq7H55E1E1I8茩#H|$ )L HT$(LE1M9t#1II9u IL| @<HH\$pLLl$xfLnML$fM:"D)T$pAOMnƄ$zL$ A>Ƅ$@$EFMII4$BDF&A0AELHD$ HH H$vL4L 4IfInL4L$ fI:"L$$AERLHD$HH H$+Hc H9|AfAgZHHt$H9V(DL$(L$LL$HLLL$hLl$DL$(AgIMM)L)HL@L$ $r$zH$A%+A "MNL$ EMD$FE Ay@t E1A 7II'IUMHUH$ DuD$Aɀ\LHHH)IH1LT$MZ0Iz@J|DL$(HH蟥fDŽ$M@uAIA3@uI~IHHHLHAB0_AA@H3H5{1H:ťE1H)L w3H5*I9营L$TD$UHA3H5*E1E1H;\Ƅ$1!ff.AVAUMATIUSH^H^H)HHF(HHVH|Hڂ7IH+$)HH9LHLI9l$ []A\A]A^H+$)HSIڂ7HL9*[M]LLLA\A]A^`SHO(Ht Hy[H{;HHwH{ ([Hf.AW1MAVIAUATMUSHH(HHl$hHt$HT$H} HD$ѣIfLALIVHT$`H$MtL衣LLHLe(E1M,$A $@ƀ@@L9fInL)ELD$LLI4:HuI}zuH]L|$M~I9H|$InHt M6BD5H([]A\A]A^A_H<$t%H~EAAHHu H$LA<$t A|$tIM,$I8AoMNI~fM)MNAH:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}/builddir/build/BUILD/Python-3.9.23/Modules/_decimal/libmpdec/mpdecimal.clibmpdec: internal error in _mpd_base_ndivmod: please report%s:%d: warning: as_integer_ratiobit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtuplecollections.abcMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContextdecimal_contextHAVE_CONTEXTVARHAVE_THREADSBasicContextExtendedContext1.70__version__2.5.0__libmpdec_version__|OOOOOOOOINITY-nanargument must be an integercannot convert NaN to integerinvalid signal dictargument must be a contextF(i)OO|OsNaN+Infinity+Zero+Normal+Subnormal-Infinity-Zero-Normal-SubnormalO|OOargument must be a Decimalargument must be int or float(OO)numeratordenominatorexponent must be an integer%s%lisignal keys cannot be deleted.,format arg must be strinvalid format stringdecimal_pointthousands_sepgroupinginvalid override dictDecimal('%s')O(O)O(nsnniiOO)%s:%d: error: %s, TrueFalseROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCcopyprecEmaxEminroundingcapitalsclamp__enter____exit__realimagexplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmax_magmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftas_tuple__copy____deepcopy____format____reduce____round____ceil____floor____trunc____complex____sizeof__adddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscreate_decimalcreate_decimal_from_floatgetcontextsetcontextlocalcontextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYdecimal.SignalDictMixinotherthirdmodulodecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.ContextManagerctxdecimal.Decimaldecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampeddecimal.Context"zg"""z"U]cMg?wO'xH/+/:/./Q///[/?ЊK1X$`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"!   @ @ @ @ @ @ @ @ d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJDecimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. localcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module?B  ?Bc c @?d d ]xEccd XLIcd cd KK9$|k??C_"@CKvl?x?;\h( |U w   < x  (e l 8 &4OP3PE d,n&D E P W`!!D"##x$y$|$%%%h&`@''(8((,)>p)** +b p, - - - .6"/"/#/#,0$0%0%x1}&1&2&25'h3(3P(|4(4)p5)5Y*\6J+6+7+L8,8^,<:q,:,x;,;-H<A-<-\=-=2/8>{0>0?M1L?1?2?32H@h2@2@2HA53AH3B3B4@CU5Cj5C5 D5XD5D5 E6TE6E)6F>6FS6Fx6LG6G6G6XH6H7I7I7J!:dK6:K[:$L:L:(M.;MK;Nx;N;O;|O;P;hP;P<Q'<`QD8W@W,A8X?AlXgAX|A(YAYAYA\ZBZ5B[RB\[wB[B[BL\B\Bp]oC]CT^C^ Dp_D_D_@EX`KG`RG akGaG0bGdbGbHc;HcpHcH4dHdHd)IeyKfKfKTgKgKgL(hLth4LhMLiL(jLXjLjLj3MPkLMkSMkZMlaMmMmMmMLnZNnyNnN(> ??@d@@@X AdAA( BXlBXB8BX`CCC$D8tDDDDXx[?[?\H@h\@]A]xD^E^(E^xE_E4_xF`F`G0BAD D0  DABA $0@@4qBBE D(D0DPM 0A(A BBBA P|Pe BBB B(D0D8J 8A0A(B BBBG  8K0D(B BBBE  8I0A(B BBBE $;LD BED G0_  JBBE t  ABEE D ABBL`D BIB E(D0D8G 8A0A(B BBBG 8 ,@aAGd AC v AD 4HLhG(`&BED RBBLBED G0a  JBBE h  ABBA J GBD(,VVAD0P AAA g 4=L4`BIB J(H0DxZRxAp  0D(A BBBA 7p ȀԀ(AJT0T AAA   08l1L`t(AJT0T AAA  0H5`.(|BJT0 DBA |4P]BEB B(D0D8J 8A0A(B BBBA O 8H0C(B BBBE G 8L0A(B BBBE d\ 8K0A(B BBBE  8A0D(G BBBE I8K0A(B BBB0KLDmBIB E(A0D8J' 8A0A(B BBBA $PAK A M H } H`BKB B(D0D8J 8A0A(B BBB@]R @`BIE D(D0Jp0A(A BBBK",wBEF E BBE   (BJT0 DBA L<ȊBHJ E(A0D8G 8A0A(B BBBA nHXBIE B(D0D8J8A0A(B BBB<(BJT0 DBA DrD a I ^ E `8hBED D(G@ (A ABBE !7@8[BKJ H(D` (D ABBA E`` BBB B(A0D8D` 8D0A(B BBBE D 8L0A(B BBBE 4| `p 8A0A(B BBBA , ABDD G0k AAB )O0(!ĔBJT0 DBA `,!YBEB B(A0D8B@ 8D0I(B BBBE F 8D0D(B BBBE 4!r@g8A0A(B BBB8!\[BKJ H(D` (D ABBA "E`` "dBBB B(A0D8D` 8D0A(B BBBE D 8L0A(B BBBE 4"`` 8A0A(B BBBA 0"xLBKJ KP  DBBA "]P` #xBBB B(A0D8D` 8D0A(B BBBE D 8L0A(B BBBE 4p#` 8A0A(B BBBA 8#[BKJ H(D` (D ABBA #rE`L$BEE E(D0L (E HBBE c (B BBBA (P$DGE T DAA 8|$h[BKJ H(D` (D ABBA $E`L$pBEE E(D0P (E HBBE b (B BBBA 8$%С[BKJ H(D` (D ABBA `%E`L|%آBEE E(D0P (E HBBE b (B BBBA 8%8[BKJ H(D` (D ABBA &E`H$&@BEE E(D0L (E HBBE i(B BBB(p&BJT0 DBA @&x]BBE D(D0G 0A(A BBBA (&BJT0 DBA @ 'h\BBE D(D0G 0A(A BBBA P'0p'dCBKJ KP  DBBA 'mPL'dBEE D(D0J (A BBBA } (G BBBE ((ԩBJT0 DBA L<(BED D(D@ (A ABBA D (H DBBE ((^@K(G ABB((,AJT0M AAA (" 0(H)\BIB A(T_RAA (D BBBA \)=|x)BBE D(D0D@ 0J(A BBBE  0A(A BBBA D 0L(A BBBE O0G(A BBB)Ul@* 8A0A(B BBBA T0=$t0:BDG0iAB00$0:BDG0iAB00(0BJT0 DBA  1k0081TBKA Tp  DBBA l15(p01MBKA Tp  DBBA 1 (p1102BHA L0i  DBBA 420P2NV0wh20K E D<20~BED G0d  JBBE o ABB2c082TBDB A(Q` (D BBBA 3`83DB] A T3ph38|3(BDB A(Q` (D BBBA 3`83BDB A(Q` (D BBBA 4O%`0,4xBDN D@  DBBA `4$@0|4BDN D@  DBBA 4@04BHA L0e  DBBA 505+D b A 085BHA L0e  DBBA l5_085BDB A(Q` (D BBBA 5$%`85BDB N(D@ (D BBBA 6@086jBLA G0~  DBBA l68(64fBDQ0{ DBA L68BBE E(A0D8D 8D0A(B BBBA 6!7 BHB B(D0D8D& 8G0G(B BBBE S 8A0A(B BBBE  8A0A(B BBBA  8G0A(B BBBE  8I0A(B BBBE \ 8F0A(B BBBE P7I 8D0A(B BBBE  8I0A(B BBBE 8<8BDB A(Q` (D BBBA x8`88BDB A(Q` (D BBBA 8r%`H88NBIE E(D0D8G 8A0A(B BBBA 89/'@X9NBDB B(A0Q` 0D(B BBBA 95`|9BEE E(D0D8GPK 8J0A(B BBBE @ 8A0A(B BBBA d 8J0A(B BBBE H<:wPf 8L0A(B BBBE a8C0F(B BBB0:BHA L0i  DBBA :~0@: BBDB B(A0Qp 0D(B BBBA ;;-p<;M]b A L \;(XBO n EA ;dNBO r EA ;  ;xXBO n EA (;pBGL0 DBA <NBO r EA 0<e  H< XBO n EA l<HNBO r EA < (<\pBGL0 DBA <hBO ~ EA 0<BHA L0i  DBBA ,=00H=,BHA L0i  DBBA |=X00=lBHA L0i  DBBA =%08=BDB A(Q` (D BBBA $>%`0@>TBHA L0i  DBBA t>08>BDB A(Q` (D BBBA >%`8><BDB A(Q` (D BBBA $?Q%`8@?BDB A(Q` (D BBBA |?%`?18?BDB A(Q` (D BBBA ?%`8@`BDB A(Q` (D BBBA @@%`8\@BDB A(Q` (D BBBA @q%`0@BHA L0i  DBBA @F0<ABED G0d  JBBE r ABB8DA@BDB A(Q` (D BBBA A`0ABHA L0i  DBBA A00A(BHA L0i  DBBA  B]080(Lh@ADD n AAA 8HL|IDG D0J AABAA0L0 LD  C O A L (LBHG ABA M{LMBIB B(D0D8J  8A0A(B BBBA lM  @MhBHB E(A0A80A(F BBBM"Ms8MBBD D(D@ (D ABBA 4N*@PNT&AdlNh&AdN)Ac8NBBE D(DP (D BBBA NPHN,RBEG M(A0A8G 8A0A(B BBBA DOP%dO`xOA)@OCBBE E(A0DP 0D(B BBBA O8P8OBBE D(DP (D BBBA ,P-PHHPlBBB E(A0F8D` 8D0A(B BBBH P5`8P BBE A(I@ (D BBBA P5@8 QBBE D(DP (D BBBA HQi-P8dQPBBE D(DP (D BBBA Q>-P@QiBBE E(D0DP 0D(B BBBA R *P, RmBEA [ BBA lPR4"BBB B(H0I8K 8D0A(B BBBA AEAhARARuPHRBBE D(A0m (A BBBA e(D KBB<,SY@0A (D JBBE V(D EBBlSFAZ A ]$S8/AGE _AAS  HSBGE B(D0A8G` 8A0A(B BBBA T<,TG$@T$\BID0FDBhTh0$TDyBAG0hDBTF 0,TzBAA G0g DABT0, UzBAA G0g DABAa A ZdX$|X4BDA ZGGX ACB$X4BDA ZGGXs ACB< YBED A(D (D ABBA LY`YIBF$|Y?BAD tAB$Y04BDA ZGGY ACB(Y(DAA G AAA ZU 0ZDDZP XZL HlZHBBBB A(D08B@AHMPQ0X (D BBBA Z-0Z,OAr A ZZL[DBBB B(A0A8G  8C0A(B BBBA `[r [$BAg A [,[@QBHA L0q DBB[0L\TBND A(JZDEAPG(A ABBP\=:Dl\BEF H(G0H8F`8A0A(B BBB\`H\BLE B(D0D8J8A0A(B BBB ]7\@]$UEO E(D0K8 0A(B BBBA rA8]D9Ap]J]P]#PA^[PA0^<JAD bAAAC `L^(BBE E(D0G8DJ 8D0A(B BBBE 8G0D(B BBB8^ 8A0E(B BBBE ^h__H(_LBHB B(A0A8D` 8A0A(B BBBA t_]W`H_ BLH B(A0A8JPh 8A0A(B BBBA _H:P``N(`|L(<`XDBEG qBBh`  H`p{BBJ E(D0D8GP 8D0A(B BBBA `P`JDap BLB B(A0A80 0A(B BBBA La@8(laFBEI qBBa La BMB B(K0H8D 8A0A(B BBBA b({ $b`ABKqBLHb, BBB E(A0D8S 8D0A(B BBBA b<8bBBE D(G0^ (A BBBA b0Lc7BEB B(D0A8Gp 8A0A(B BBBA dc,cl_HNI {ABALcBGB B(D0H8G 8A0A(B BBBA dL,d8 BJB E(A0D8HQ 8A0A(B BBBA |d~Ld BBB G(A0A8R 8D0A(B BBBA d:( e8XBAA PAB8e TePheP|elGGMGDGDGDGDGDGDn$eFBDG0uABHeBPH H(D0A8Dp8A0A(B BBBHDf.BMI E(D0A8D8A0A(B BBBHfr@BEB B(D0D8G8A0A(B BBBHffBEE B(A0A8J8A0A(B BBB@A@@@ #3CN ` po` B 8T= ooHooRoeH6`F`V`f`v`````````aa&a6aFaVafavaaaaaaaaabb&b6bFbVbfbvbbbbbbbbbcc&c6cFcVcfcvcccccccccdd&d6dFdVdfdvdddddddddee&e6eFeVefeveeeeeee0$ @hp @~@P`%#p}@  Z _P$dВi n $w@PP`p0Pp0`@`<0 ;::: = 9A7_6`5_@4X32 2e2`140j6 0#8/+?@.7`*@PE(O@'S '` &j@ &v` %}  % $  $ # " !`@!V @ EPp%@C^@@! @3`=QJ  V' a, mJ@ tS` {U@ v0&pp0@P`PbXuXz@X {XW0 WVP`V@UЛUpUЛT`Tc TPeS PfSn@SoR  rRe RQj`Q#Q0P+P`P7P`O@N$@@N-ЉKOuK3@bJ9`bJISv`I`0wIjwHvw@H@xG}xGy G`yFy`F zF>VdEi`EEi EiD{`D@} DCR`C@CPgB!0h B3PjAJ@|AV}`Aa~ Am@=`@t@{?`pp`?l0e ? `Z >xPk>Pn@=pZ`Z` Yc c XLI8>[@ BBBBBBBBBBBBBBBBBBBnBQy _nidwfrnBnBBBBBBBBBBB5-NFia{BBBBH(8s@s ( @80H@_decimal.cpython-39-x86_64-linux-gnu.so-3.9.23-1.el9.x86_64.debug37zXZִF!t/k4]?Eh=ڊ2N7jzԫ Lxby,Psq򊜪fLZ(D:7"Z0aPӕ>ABgےe \Oq(ɁDBz$-arQʅevWKy !cYCfj|T˱2v4t+BzэN;eʳ~rLWp#\Y{wBêt?@nk>${MRMz=k/>Xzys!~qn[5в:Ih9^^q7bFlAFw;CY ~齞ȥ^ygO]X|rsfjyfU#LA_@h؆9TT6MyiS@h EZ{:*zi+|N@oxLcW@B?.]Sy&ኌ33 _f_u L:ix_xU4A91'K2.LEJ%V9mM%^n2.y0V*~ >jsO:ox~AErB{t :&O0ʁ셯ݢ_@h 01hBQFSlOlHa"hEӏq!lp3 /4ƾ;)rfUƁ``jP x(='UhbbƴQiO&Ey;VYӣSA397-zxm IQEHLW<.|ƸŰ&b[0%l?;Hvml^C3ȓÎYp|x򧇥{\ [u Ge:Ϝ\TEG+_ 7T%`7 &Be [_srچsGa>Q꾚9Yvέł4,!]fkjP}^qC|$x4{U̲U Ʀuug Đe:Pp9&7#JC!tLhOH_r>[h\֨הGba$ yXA LX&nQSxX1+wJd}짧ۀah^YApRީJ۽AfXόQUVu~mn-rQ*6 [ E@ [ حbS *T: rM:~0JDrʹ'm3A5?t+<9@=h޸)V\N$dN1K*Џ8Wnj {UGLgCNlʀT>R4qpq\6:ذXb8s6PCPD؛惘1ͨ`b|qx0|[$W")l* $& >եt940)!x&w݉9 LK/e=57&U ~C.ߎ.lsb61yPEIW~1Iɥ9BSauV>7VߐezY|uU EN򧪬XrAM>[h}+fsXv@}4r:A@DԀFiR̆ȿQ[R~$ 7Bҟ6-ɳxs7d$ 1+[KL9^(5~؎qM>Fe}̆H~^%6Qi3A؆b}'mJ9]`[$sр11/ٍwR?OT 'C*{AKNbI'K틲ysWB aÙ`1fP6WGm8+4Atj2B˽JjTQ%W 'hNrX/BJVz~ c֌ڢ/15j\j0N˘tḩݜݻYTs.)Y++wq4uSkE\ߵaKw!~%|`dAT zx0wD ~[W !@7'˝nJ>^~N#ې.]a {B֨d)jo3`&xY6t.DR&Ũ +]0$$&EgPר>*V(he2UEr- [ f pc50/>wa(!o3$GiEc0$ןur\p|Э( Ü􎁪TNJnqևَ̮M&c\[+$ޟ'aad ֲ ft#RSG̫_H/3D9WwY$ :q(ԏXķu<n2kP)2S'F5~ n0gDҢo/gG㝭]$ ȳ? SwnJG+=v*'p̍!+1%0# **h)3y|Ė+["5[Q)T<8.ֱ\RgHFU*p\6WRU$DWr\愞 E+񱈰,q}&Iڼ>]fSo-K:5S46Ÿ/x1kCp[s ӇE.@Hwls l XַĘXO5Z5Yp9_}NP%g/J)[ϭ_:%^BC&lF5D05\:=-JfFm3<:muQp@fOW| ȞXNy -c+sA$}ZEĻp / {YNͣw\߄xwL$$E0 exKшftYL&xtԱuuRޑ1wEɓ$n;Jj>]v]H.[!u}y.,)g$%R5D r_/!F?l2 ˑ[R/̟T) >ٔn/&wX BV.V6>0$""(e0K;:VM c4VۑuQat,Q|t xHX[!9n`]סBA5"#ׂg2&o}gI|8!>|H30ԫ#gvWidI' 2rל4t,VSͻ$]&{ՄcA~qKP4rLU7uW6bnVeOtp{x"%pr6eHxOAmgx'X7|[e?M'QIڼϮ޻9J\qbĝ S-M ^&MYRq:,[29Ƚhwb'y Ul~*bBGwt2R]N| ~w#V LGjg )pKB@1Gw(+ڹO~6;%]sωJ{-R׻PA,.%߅X{`4} K\%a@f@w&%q}q&֕vcg 8}_9xkN>Sq3 d~ hPzAb\ĨklQXTz$ |T$_