ELF>e@<@8 @]]```==*+HH H 888$$Ptd|||llQtdRtd00GNU"Fa|(ܔzzG~a0w* JA*;DXr5qmQavi%tKB"b :.IPY2 .m@%azXjj, :eF"[U __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyInit__decimalPyMem_MallocPyMem_ReallocPyMem_FreePyLong_TypePyFloat_TypePyBaseObject_TypePyType_ReadyPyUnicode_FromStringPyDict_SetItemStringPyImport_ImportModulePyObject_GetAttrStringPyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_NewPyTuple_PackPyExc_TypeErrorPyExc_ZeroDivisionErrorPyObject_CallObjectPyContextVar_New_Py_TrueStructPyLong_FromSsize_tPyUnicode_InternFromStringPyModule_AddStringConstantstderrfprintffwritefputcPyModule_AddIntConstant_Py_DeallocstrcmpPyExc_RuntimeErrorPyErr_Format_PyObject_New_Py_NoneStructPyArg_ParseTupleAndKeywordsPyLong_AsSsize_tPyUnicode_ComparePyErr_SetStringPyList_SizePyList_GetItemPyErr_OccurredPyExc_ValueErrorPyContextVar_GetPyType_IsSubtypePyContextVar_Set_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_PyUnicode_ReadyPyErr_NoMemory__ctype_b_loc__errno_locationstrtollabortPyList_NewPyErr_SetObjectPyList_AppendPyFloat_AsDoublePyComplex_FromDoublesPyFloat_FromStringPyUnicode_Newmemset_PyLong_NewPyExc_OverflowErrorPyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyTuple_TypePyDict_SizePyDict_GetItemWithErrorPyObject_IsTruePyExc_KeyErrorPyLong_FromLong_PyLong_GCDPyLong_FromUnsignedLongPyObject_CallFunctionObjArgsstrlenPy_BuildValue_Py_NotImplementedStruct_Py_FalseStructmemcpyPyArg_ParseTuplePyObject_GenericSetAttrPyExc_AttributeErrorPyBool_FromLongPyComplex_TypePyObject_IsInstancePyComplex_AsCComplexPyFloat_FromDoublePyList_AsTuplePyTuple_SizePyLong_AsLongsnprintfPyObject_FreePyUnicode_AsUTF8AndSizePyUnicode_DecodeUTF8localeconvmemmove__ctype_tolower_locPyDict_GetItemStringPyUnicode_AsUTF8StringmbstowcsPyUnicode_FromWideCharPyUnicode_FromFormatPyErr_ClearPyDict_NewPyDict_SetItemfreerealloccallocmallocPyObject_HashNotImplementedPyType_GenericNewlibc.so.6GLIBC_2.3GLIBC_2.14GLIBC_2.2.5/opt/alt/python38/lib64:/opt/alt/sqlite/usr/lib64ii ui ( @h  3          ( #0 38 C@ NXpP3(h@`0 @`0@ H@h@x 8PP5x2!@" HXZ0` _( 0p3HdP0XPpix@n3w`С @H`h (л08м@`HоP0X`h`Pн@H`X`\`hx[`%ZIZK YPW nV (o8U@H nX@T`h0gxSR Re?`QpBPjD P #(F8O@+HMX@N`7hpnxJ@THO`GSPG``FjF v(8E@}HX E`h xD D`CB@A @A V(8@@H X@@`hSx? >`>@,<3@<0R8 ( m8@7@H X@3`!h x@13`/=``.J--V5- a : , m( X8 @*@ tH aX `)` {h dx @'    %  @ $ v  `5 #  0!!0 !(!@!H!`!h!!!!!`!!0!!""@"H"@qX"x`"h"x"x"""@x"""x""@"w""" w##0#v #(#8#`v@#H#X#u`#h#x#u## #u###t##0#`t##r# t$$`t$s $ ($u8$s@$H$~X$@s`$h$x$r$ $$r$e$$ r$$$q$j$ $`q%#%0%q %(%p8%p@%+H%ИX%`p`%7h%x%p%%%`o%@%%n%$%Ь%@n%-%%k&O&&k &3(&q8&j@&9H& qX&j`&h&x&i&S& &`i&`&p&i&j&Ї&h&v&0&@h'''g '}('8'g@'H'pX' g`'h'Љx'f''0'`f'''f'>'P'V's'e((`x(`e (E((y8( e@(H(0yX(d`(h(Px(`d((( d(((c(R((`c(((c))v)b )!()w8) b@)3H)yX)a`)Jh)x)a)V))`a)a)) a)m))`)=) )``*t**` *{(* 8*_@*`H*~X*`_`*lh*@tx* _*****Z**^*x*z*^++~+@]@+H+ X+z`+h+Px+`z+++ y++++H,P,{`,@+,,B ,,B ,,B ,,B --B 0-8-B P-X-B p-x-B ---B --B --B ..B  .(.B @.H.B `.h.B ..B ..B ..B ..B //n/B  /Q(/y0/ @/_H/nP/iX/d`/wh/p/fx/r/n/B /n/B //B /B 0B 0B  0B 00B @0B P0B `0B p0B 00050-0N0F0i0a11{@1P1B `1B p1B 1B 1H111111(11111282s 2 2(2@2H2`2h222222s 22(2 3830 3H(3@( 0 8 @HPX`!h"p&x'6:=>BDQRZ\_goqrx (Y028N#ApAAx$*`*P X ` h p x                      % (( )0 *8 +@ ,H -P .X /` 0h 1p 3x 4 5 7 8 9 ; < ? @ A C E F G H I JKLMO P(S0T8U@VHWPXX[`]h^p`xabcdefhijklmnpqrstuvw yHHHtH5%@%h%h% h%h%h%h%h%hp%ګh`%ҫh P%ʫh @%«h 0%h %h %h%h%h%h%h%h%zh%rh%jh%bhp%Zh`%RhP%Jh@%Bh0%:h %2h%*h%"h%h %h!% h"%h#%h$%h%%h&%h'p%ڪh(`%Ҫh)P%ʪh*@%ªh+0%h, %h-%h.%h/%h0%h1%h2%h3%zh4%rh5%jh6%bh7p%Zh8`%Rh9P%Jh:@%Bh;0%:h< %2h=%*h>%"h?%h@%hA% hB%hC%hD%hE%hF%hGp%کhH`%ҩhIP%ʩhJ@%©hK0%hL %hM%hN%hO%hP%hQ%hR%hS%zhT%rhU%jhV%bhWp%ZhX`%RhYP%JhZ@H-6H 1H5iH}HMDH=.!Hu CHcSLL?IHE1Hm11H=]HtH/HIMt I,$Ht HmHt H+H=HtH/HH=HtH/HpH= HtH/HYH=HtH/HBH=HtH/H+H=HtH/HMt Im%E1d1E1HnH8I,$uLE1E11Hv魑Hi閑11E1lH11L[L?aE1FH*Ր PLSHVHXoHʏ1E1LE17L阏H|aI,$uLhHmuHYE1E1^HFʎE1E1;E1E1011E1E10HLH5KH811I,$ID$HtE1iLE1iI,$uLE1iHH5H:oH H5_H9oImuLpE16scLd$sLd$s1uI,$tE1钕LE1.邕A}:wA|=x!E1vA|VwuEWA~woE<$IHH9E|A_tADL$L$DL$0x0L$IAD$xADL$|L$DL$x0L$IAD$LA}vA|wL A9eA$ IxuA|uE1uLգA;tA$ IE1{y1zIG21A tAH9dI_(MD$MgJ.&L$H|$xD$PL$PLBID$(LE1x1LL/LLHgtI|$(It$ILLHz/IlLLLqg5LLLN/"E1H)ItLE1 K< E1锸HEHHM HpH9HLH9t E tH9/Hu(HHELH.HELHfIM@=HH5H8]H ϜH5H9AÎAr1HLHmuHtE1L} CMtUI/uOME1HmAfISE1VH:HmAuHIM9E1,HmtIImu'LLLHHmIM}LI.LE1E11%E1E11E1E1E1E11cE1E1E11 NE11܏1ՏE1͏ E1馒LxH|$ H/uH|$H/pHHL$鶑[HL$HϚH5؍E1H8.H(HL$D$(+|$HC(u H .HK :IAHE1K鴓HmuH7ImL$鍓H_H HL$ƒHL$HH5E1H8>[HL$|HϙH5،E1H8ImuLHmt>E1єLz齔ImuLE1c魔HVHL$ HD鎔1HL$xH;H5DE1H8QߖImuLHmt>E1L饖ImuLE1靖HHL$H~I,$t E1zLI,$t E1̗LqLE1dHL$SH^H5gE1H8t̘ImuL HmʘH 饘I,$LE1銘L`HHL$ԗH1H|$pȜH$sD$p騜H|$(^鋜H$K$hH5JH$"$'H|$ LHLLLHL膜HT$PLLHt$@ќLHLyLLNH8 L1[]A\A]A^A_I<H8 1ɺ1[]A\A]A^A_JH$(\$II?BvhIwpI@H?zZI9wZIvHM9IrN M9HL9Ѓ I Ic M9wIƤ~M9ЃH#NJL9ЃI TM9Ѓ }sIbLF1LIHH+1LT$A Ap6H$$1ɺ1LHT$L胸HՕH$•D$`LLT$H|$0L$L$LT$ H\$`L\$MLfLHHfoL$LT$L$D$`0T$h\$xSELT$L\$u{D$`urH$HT$xE1H|AĨuLT$L\$D$`LT$L\$uLT$HL\$͔LT$L\$H]HM(&11HLT$L$W9D$`L$LT$uH$wD$`LT$L$LT$HL$OL$LT$1"1LHL\$LT$$EHM(LT$L\$LHL\$LT$\EHM(LT$L\$LHL\$LT$$LT$L\$I9BH99 1LҾHL\$L$ L$L\$HT$ HU\eHT$H4$肈H4$HT$HItZH\$LHID$uILLHHSAuI~(Au'LD$LHwD$HLHT$(dHHD$8\IHH|$(HdHT$(HH[HL$(HHT$ IMHLLHD$(4HLD$(uLD$ LE11LD$ L#LHT$H裴HT$HZL}(LuXHT$ IM1LLldIHT$ 1MLLGhLLyH|$`^H$pD$`>H$HH$H$"#H$H#ZH}(!I\$H5LM HH9HML9t E t?L9OHu(LTM:DeH]AE DeH$H!H}(H$H!uxH$HYJIL9_vHL$FI.BLE1HHL$Lr齖I.uL_Hmt5ImLE鸖HE15騖L(龖HHt$җHHt$1Ht$3HHt$!HqLt$PLHL.tnLYLLHL葞HT$0LLHt$ \LLL>q鮝A $@I?LH [L]A\A]A^A_3LH謱lH|$P\H|$xD$P?Lَ$H$Ǝ$H|$H$$龜H<$韜H$q$|IƤ~I9҃ H#NJH9҃IrN L9wHH9҃ H|$,H5эI9w I(H$0L$Ƅ$0$0L$IG(uWH5AIw 鶝H$D$pȟH$q$队H|$pY饟AjH|$@@顟H|$h0D$@鄟HL趯.DL޹ILH耯^L$IALabHC1DŽ$H$I9HLcHNAOLIII9|MMuL|$PLt$ LHLML $IL$!uMLHt$ LLMLLHLMLLHH;L $IEu t$ dD$PuH|$x͋D$Pu H|$PLLHH$m!H|$($魠L駠wHH|$PZ +I]xEcI9ЃH)cH$$XH<$QH|$xD$PII#NJI9Ѓ鬡A@H?HHq/LLHMHT$0LHHt$ 聏H\$PLLH tYI7HD$lH$D$VH|$,NH$$CLL蜬c LLD$T鹥LԉեH|$(ĉ$鹥H.1H^.H(HL$D$V|$HE(u H\HE EHE1HHL$kHmuHfImLSHF龧HL$%H@H5I{E1H8V駧LT$AK1HHAuIS L9LHQ|E t5L9$LHLD$cQLD$H([]A\A]A^A_LHLD$'LD$H]xEcL9EAA:H#NJL9EAAHH TL9EAA LH齨ۨH5H9w yH(HL$D$u|$HC(uH{HC C;HªHk t5H9LH@PrE t&H9LH!PLHFLHxX[]A\A]A^A_HE1%vHHL$ĬHmuHImpL=HeHL$~HمH5xE1H8E t>L9˭LHLD$KOLD$H([]A\A]A^A_H?LHLD$LD$$ tIL9DLHN4H|$ANL1IHw[AuOI麮LHI]xEcI9EAAI#NJI9EAAݭj@HL$yHH5wE1H8ImuLvHmt>E1L_鷰ImuLE1HH;HL$H)颰 t5L9òLHM鳲I TI9EAA 鱱LH釲LL$AOL1IHAuOI I]xEcI9EAAQE t5L9LHLD$+MLD$H([]A\A]A^A_LHLD$LD$I#NJI9EAAHE1 靴HwHHL$޳HmuHImLWLHL$HH5uE1H8'HE1϶Hy顶HmuHeImĶLR零HEHL$HL$ϵH:H5CuE1H8PYHE1yHKHmuHImnLEHHL$鋷@HL$yHH5tE1H8HE1z#HmHmuHYImLFH9HL$5HL$#H.H57tE1H8D魹HLLHT魼HbLLH4L_ImuLHmtE1^ImuLE1GHu:HhHL$鄿HL$rH]H5fsE1H8sI,$uLE1ApAueH1DHHt$Ht$H|Ld$HH5tH8E1cHE1SHIm*{Ld$ LIt$H|$L9NHmtImML:H-Mt$LM\$ IvL9ILL9t A$ tL92It$(JID$kLLMt$LLHHE1HHL$HmuHImL{LHn&HL$Hh~H5qqE1H8~H|$h~D$@;I]xEcM9׃vH#NJL9׃]HvHI9v?HrN I9wIIM9׃ &L¾I TM9׃ LD$M9LHӠhIL|$@LLL誆tML}TLL耠MI#NJHHxHL9tD$rLHIH|$8}D$H|$@}D$0LL$A LD$LLLH;EsA$hH]M|$H}(DT$L\$HT$HL\$DT$ DT$L\$HT$HL\$DT$EEH}(DT$L\$HT$LL\$DT$ L\$DT$MN3HT$LL\$DT$gEDT$L\$H|$ _|HT$L=EA$M\$(H|$H3|D$ VLE1NHAHL$ML/ImuLHmHHL$H{H5 nE1H8H${oH|$x{D$PgH|$Pp{_H|$H`{D$ WLLH$3{$H|$ {HH?H9u HH LL-PIdIHyMIiMIY@L|$0@LJLRLL)$L|$0ifo $)L$@HT$ H=CHT$ H HH TH9EAA HL$H0yH59lH8I1HHD$HD$HmH1HHL$KHxHLE1MHHL$L ImuLqHm0H^HL$MHXxH5akE1H8nLE1wHHL$L7ImuLHmZH1^HL$wHwH5jE1H8H$,H$LDH$:xa$,H$L輚$,H$L螚H$w*H$w$H$LZLwH$w$H$~w$LHLH9HT$HeHT$f1Ht$L FvH5GkE1I9lHHt$qHt$HHt$L uH5#kE1I9 I,$HLE1+Im-LImtI.LLImtI.mLgBLZImuLII.vL72I,$^LE1HmtImLHHmtImLHI,$XLE11Im=LI,$LE1|ImLdImuLPI.L>I,$LE1#kE1MImBL5E1zE1AtPt\At_u LtI,$t[E1@AtftrI,$uLE1I(\tALMtI~(AtALE1`HI(tALtHYaLH|$HIm4L'ImLWI#NJI9HHHIrN L9w#HH9HHH 1wH|$1LL$HNgmH\$H\$LL$E11*1#ˀEE1O11DH|$Hh[]A\A]A^A_鮟11ɺ 2H](oUHt$o]H|$0LփPH\$XI\$L$0I\$LT$HT$8\$H9LL$L\$IL9H|$Lʾڔ IƤ~I9HHHL-kHDD$LLL$ L\$L$Hl$LD$ t8AAEkADExlH|$Hh[]A\A]A^A_cL|$LeLLLD$IT$L{A7AM)@t$ H\$M_A7 @+11eImtI.LbrLUImuLDI.L2]I,$LE1BHpH|$(p$;L¾HKLHD$HD$LHD$HD$tI.uLI/uL1XI.uLsI/uLeI,$?LR1"DT$Et6LLHxDt$u#HLH[]A\A]A^A_{VLLHDt$Qt$H1[H1]A\A]A^A_鄜I,$LE1ImLImuLI.uLI/LrI,$LE1WHnHHnHIHnHHnHH{nH(I,$?LE1"Im$LԿ I,$LE1蹿ImL衿wI,$LE1膿ImLnImuLZI.LHI,$LE1-I,$ULE18Im:L ImuLI.3LԾI,$LE1蹾ImuL襾I.L蓾I,$LE1xImuLdI.LRI,$LE17rImuL#I.LI,$LE1ImuLI.LнkI,$LE1赽PImuL衽I.~L菽:I,$fLE1tImL\I,$LE1AImtI.ML#LI,$LE1ImLIm>Lμ$I,$&LE1購 ImuL蟼I.L荼I,$LE1rI,$zLE1W]Im_L?EH1[]A\I,$<LE1Im!LImuLH|$H/uݻLd$ImuLĻI.uL趻L螏HT$H $  rL\$A HT$LHrUHUAU(IuLL$LT$0LL$H?HT$LLrD$,HD$ Hl$8LLd$HH\$@LL|$MLHHHgHT$MLHHHl$ L%cl$,tOD$ tMLHHH#HT$MLHH}됺1H $ D$LT$0IH LH\$@Mo$Hl$8Io$H$D$ H$H$($8@D$tLL$MA dtLT$IA KBD$MLD1H$eh:H$Rh$)H|$:h H$'h$H$ hH$g$H$ g}H$Hg$ Y[LH]A\A]A^F[L]A\A]A^6pAM HHg4Hؾ1HLvHH1I41ImtI.LeLXImuLGI.L5I,$LE1ImuLI.LoI,$LE1ٷTImuLŷI.L賷>I,$jLE1蘷#ImuL脷I.ALrI,$)LE1WImuLCI.L1I,$LE1I,$nLE1QImSL9ImuL϶I.LL轶I,$4LE1袶訶1ImCL~)I,$+LE1cI,$LE1HImL0x611LGL$$$L$HS1KI)uLҵEtJuHdH*uH譵踵L<$MLT$IML臵1H}(FdELhLHD$VLT$YL%UcH5XI<$uH\$L3Lt$IL3sHfH XH bH5SYH9HUI,$tE1I,$uLE1袴LE1蒴, u H51cH9w CfEE t`H9= HT$ H ,+ I| HH(HL$ D$ |$ HE(uLbL] HT$ H11AuH|$8bDD$HA>HD$LwbHD$&HD$H|$8]bD$HD$HD$L?bHD$Ld$Lt$0LLLjfofo%HT$(H$H$L|$$H|$$$D$$HD$(Ƅ$X7LH5N[HFjD$0LD$HHt$XJ| D$eH|$XaaD$0tH|$0Kadt$1ɺHH$aD$`L a1HLL$RtFLMLHH*HL$DL$$D 0LSL[(K|u AMLLLLHL$MLH$L D$` D$0 t$$HT$H߁1HZHmHEfHHD$5HD$H#lHH ImuLI.tE1UL߰vLҰ;M;tk D HF W 0 IvH#NJE1H9HAIH)HL!Ln I/uL[I.tt1r HF I/uL3I.uL%I,$uL13 LHD$HD$ LHD$HD$ Lٯ1 Lʯ+ ImuL趯I.tE1 I,$uLE1薯 L良 H|+ 1I,$t1LZL1KImuL7HmuH1&lL_E1I,$tE1LLE1xHmuHѮImuL®UH赮HL訮 H蛮J ImuL臮I.tE1 I,$uLE1g LZ LM H@ ImuL,I.tE1` I,$uLE1 I L< L H E1F I.uLʭImtL諁$ L训 L衭HHD$蒭HT$ H耭 膭HD$E1E1E1HE1ڬ PL$H޹ LLƄ$>fDŽ$ D$TD$TEZ>AAAD$UD8]D8T$AH$D9oBLIDIA?B فL$TLB[$t H$ [薫H$[$ȁL$TLZ멁L$T D$TL$THZE1;AtAw,AAAAAt(AvAtEAw,AAAAAt#Ƅ$ZAAkAAUIcƄ< [L]LA\A]A^z|L¾Lj|([L]LA\A]A^RbHHXH5aPE1H8E1zH詪诪I,$tE1[H胪 LE1s>I,$tE1HW`LE1GI,$tE1H+LE1IM-*I tI L WH5OII9 DfLk(1HCACADA $!Lk(H;k u fHC1C A $K1E1!H9HMI9u GH" t,I9u"LH|$ H|$"I $R"LH|$H|$ЪIMH1]HHD$跨Ht$"H1]HHD$蘨Ht$#H膨M#1D%HHD$mHD$-%H1]HHD$NHt$G%1%H6V%HjV%I,$t`1LHD$ ImHD$LHD$HD$ImuLԧI,$uLŧ1yL趧1j蚩IML\$HMHLLK HL$0KH-V\HM1H5SH}ѨHM)H=MHu 詧dHD$HqH|$8U%H TH5MH9A$1%LHD$迦HD$$LTH5MI8ߦ1{%H TH5MH9¦1^%0&LHw"'L%U&H|$(U$&PSHTl1HyLH5RH;袧H )H=MH3 |7SHTS1H)LH5BRH;RH )H=fM虩H3 ,H|$(LD$ I9K 1HHHHD$֥HL$HIHT$MLH&L\$ H|$(IH|$HLL\$u(L|$H1IIL{LD$LLJL=HM`&Ld$H|$HHX[K&]A\A]A^A_(L 1HNLLT$HL$HMHt$ILH&H|$(L\$ CHH5(L8S,LLHHHE1LAE1I9I#NJA1MJT HL9*E1H9ڽALL)*HIHL9+HL .*I1IL9@IH)+HH9v#H H9wI{(H$+If(AII9T(O4K(LIHHLHHH\$1LLLHD$HLLLH)HD$ͤHl$H1HI,/HSH<$LLLD$tBLLL舤H1HH|$LLuLtZYQH(LKQLE1?QH<$5Q*L'QH<$QH$*LQP1DH u1eHNHILxHH1*H{E1wHIL)MH9I)L9L)HLH)L9SKL)HI H)H9~vHIL)MI4I)L9L)IHL)I92L)LITL)M9$1*HD$H)HHHu  HD$I)HHH  HD$I)HH@  HD$I)HH I)I  H@HHHKH|$0#OE1葟I%+DHD$XHT$HMLH|(HLH|*H׋L$TLHHD$XHL$XI9uH|$HLLL$xLD$pL\$hLT$`,LT$`LL$xHD$XLD$pL\$hLHLHIH|*LI|(IxMHH)H)DHHD$XHD$XI9uHT$HE1H H{IHH Ht*HH)Ht+HLLH)DHM9u?+1>.A-HD$H)HHHC%d(HD$I)HIHHp$'HD$I)HH &p(HD$I)HH#'I)I%(H+H(+H+H*1Z1H4ML1I,$tE1.HL-LE19-H1HnLJH5JH8t)LOIHHED#PHLHMEH LHPH=E1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$OHATMUHHLD$ D$ 訥D$ A $AtLHnH]A\AWHYL=AVIHcAUILATIUSH8HHt$HHsaH ZHL$HMt9IvLu0IH='L%LGL=L M%MFLD$DLLAׅu1'H|$DLAׅtMVE1LT$L9|$vTHD$KTK|JLJ4HT$(HHL$ nHt$ H|$(HfHnWfH:"CTIDLLd$LAԅgM^E1L\$L9d$v}OtK|HHO|Lt$OtH|$HHfHnHHLfH:"HHLfHnCLfH:"CDI|H8[]A\A]A^A_AWMMAVHIAUIATIUSHhI9wpIwHLL%LLD$XLLLLT$PLd$HMHLJ HIIXHH\$HHI)HT$LL9M9K4 1HLT$H MMLLHHLT$tCH|$KHL{HL$1HMILLHHHHu01K1HLT$H MLLH|J;HL HHL$LLT$HLHL\$@HDI)LL$LHHL$HLCLNT LD$8LL|$LHD$0HDLT$(Ht$ HT$0L|$HLD$8O|=HLHT$(MLL\$H1HLL$HT$ K4ML\$(H Ht$@HHLD$(H|$HHT$LLHT$HT$HLnHL$1HLL$ILLHHILL$IHHQHT$HLHT$HL Hh[]A\A]A^A_AWWAVAUATIUHSHhHN(HT$HVH|$8H$`( ~FD$/L$(HT$LL|$p(%fH:"F H$`H$H$H\$@H$(LH$XHƄ$0Ƅ$0HD$8Ƅ$0$$$$$8$HƄ$PLD$(5$IfIn)$`fH:"l$$Ll$pIɚ;wkI'w%IcwI  II?BwI III?zZM9wRHvHI9wI TM9Ѓ IrN M9wtIM9Ѓ ^Ic M9w;Ho#I9wHƤ~L9Ѓ*H]xEcL9ЃI#NJM9ЃAH} H5GDA)HSIcL,H9HLH9t#E tH9~LH  LHH}(H$`LHt$ eHEHHMILm<$HE1HXLIgLAYHt$(=ͯDŽ$D(ʯD$dHLT$ |$HH$HD$HHD)D$p-D]A/T$/AHD$H)ED ڈULXIcLIEu H>L;d$t6H|$HL Gt6A$u I|$(S>A$u LC>D$AD {Ht&H;l$tEu H}(>Eu H>Mt)L;d$t"A$u I|$(=A$u L=H|$1H|$1tHĸ[]A\A]A^A_fHBATH9ّIHH=>a1ߐID$@HH="a1ÐID$HHH&aHtioBM\$@It$,AD$oJ AL$ oR0IT$(AT$0ISHpAD$PID$XLA\10IHXMD$@ML$(MT$, I|$H5MHLPAD$PID$Xӕff.fHG1DAWAVAUATUHHHSHHH;HH\$8H\$0H\$(H\$ H\$H\$H\$H$P1HT$RH7HL$ QH +[LD$0APLL$@AQLT$PARLL$`LD$hWH0H|$8H95HHc HpH9Ld$0HEI9 M\$AH5{_L9L9%s_L9%n_L9%i_OL;%d_rL;%__xL;%Z_vL9%U_tLAŅH5_LH5^LގH5^LǎH5^L谎AL=^K4LE茎t8IIuL-9H58+I}׋AfH|$(Dm4H9t*]HHc H H9HE H|$ H9%HIc L9H|$HEH9mHHH|$EPH9QNjHrAII %L,$E8I9MIELhIH[E1E1LLkL4[I:H;;[}H=5[H;@[H=:[eH;E[wH=?[JH9J[H=D[/H;O[H=I[H9T[H=N[IH H>H;Fu@F5IA M9AAD}(L|$I9I__L IH E11L-YHL I}UH;YH=Y:H9YH=YH9Y,H=YH9Y!H=YH9Y&H=YH9Y'H=YLY@I I;I;Cu@ACHA I9AADDu,1HH[]A\A]A^A_f.LXH5X4@LX|@H5X@H5X@LXL@LX<@H5X@LX@H5XLXH5XAE(E,1A|AqE1iA^ASAHLd$0I9H|$(H9:_H|$H9H|$H9L,$I9%1y]HuHE FHLH-N4H5g&H}n-HuH%4H5~%H8FHuL3H5f&I8HL{1O*-]qHH-3H5/&H}辅}LH[%eIHL Y3H5%I9z9fAV1H SAUIHHATHb0USHPH-d3LL$LD$HD$Hl$'pLd$I9H=jW1HT$ FH|$ HH|$H/Lt$Ld$MI~H6H9qHaI~Hu/LLL+IHPL[]A\A]A^fLHHLLHHIyHPL[]A\A]A^fI|$H57H9Lt$M'LD$ IH!Hl$ H1I}HL$ H豎t$ L+ًH;=1LJLLLHPI[]LA\A]A^D$ I9uM9nu IMLIH^IvHxHT$ ,:t$ Lv$H5|0'XINH=0H5#1HQH?OE15H5x0H#LH6^HHtHHmItNMtLLLLI要蜅H0H5#E1H8+HށHD$HH#RTff.HH=ET1HT$ɂBHD$HtHff.AWAVAUATAUSHG AAA @HoLo0H}5IHHH]AA|-H .<9A}L .A<91DALILDLD#DA_uPAD$~H@}LeL9uA$HL[]A\A]A^A_ABA|]H.<:AA}<AHtrAA}!L-A: Ht6AA|L-A;H9A1ADL$pL$DL$ׁL$0HEHL9ILoHHoH}IHH`HA|-wfH5,>u$HAHH9HH]Au.A|-wLl,A8tHyrA*A|]Y!HHAA|mFMA6E|]EfA_uuAw~"E$IHH9uz=AA|]AMH+:FE H\LoHlH|$y||H|$G A/A}h3$@AWHg/AVAUIATUHH@D$ H90IHIT$HAD$0H5 fIT$@fo HXLIHMt$L|$ AD$ foՖID$HT$IHL$ LHt$(LH|$0LAL$0LD$8)T$0t$ AuXHt$ ru*H@L]A\A]A^A_10IH%SI,$HLE1|뾾LLlMt$ H.HH9u7~Ht?HPHfo ڕ@0fH@HP@@ H0H10Hu΅ɅffoHHXLIHHHGHWHO Hw(ff.@AWIAVAUATUHSH8HGHGHT$HL$+1Ҁ-CM߀NSIaCE1E1E1fD]Hut\Hڃ߀E.~DLCDZMuMu0]IHuuHt$ MMLd$ y Ht$(I|$H{A|$:LD$(A8+IGHt$ HL)MEHc H9AHNgmIGH9HH9H_Cy 5HHHLINBL)#IH5(IO I9IMH9I_(MD$MgJ+H\$Hl$ L#Lc[(L)Ld$M)I9E1HAHIHIH2I DmAANDuAAFy}H8L[]A\A]A^A_u@A@}@N/L}MHt$ H}IHFH]xEcH9MIIIJAE1MM)AA6O I0HcN JN AIIt$A.KI0LcM CN AAKHA'1.ILI0HֈA.H.H.H.H.H.H.HI_ATISHLQY]Ht%P 1e@1eHH0HHLZ[A\f.UGHtt*HUH]H@H@EuH}|f.AUATUH@HFD$ dH sforHLl$ HXLIIIHT$ HT$HL$(LLD$0LL$8)D$SIHdt$ AQdHt$ u H@L]A\A]Xdff.@AWH AVIAUATUSH8Ht$HT$ H9ZIMH\$fIL$Hfo qAD$0M|$AD$ AL$0LkID$IL$@MD$ILL$t$A Ai0ID$0At$Il$HHɚ;w"H'w@HcE1H AIMD$(Ht$ LLH8L[]A\A]A^A_H?B_A HwHMIH Ht$HnI9cfI*Yqf/q{cIH,LWM9_cH5I9IMH~"LLLT$?IL$@LT$MMF\AH#NJLL$LMMHl$HD$MHML$@IMGHA@IHIHI#IIO@LH)HHHtlHt@HtHH!HbHHHQHHH!HsbHHHQHHH!HVbHHHQHL9HLMf.HH!HHLAHHHLI HjHHIHHH!HHHHHIHI`HIHHIPHL9uIHHu2HL$H\$tI1KI#NJL98I1^MuM9`KMLMIFET$IL$@Ml$0ID$ AD T$ET$JtHɚ;H'EHc*H IUHH4HHLGHHHHHH9w!HIHHHHHH9v@LmMIO LmM9]fI*^-if/-i]5if/3H,LkHx]ALIHH2IH\E\HuLM(I|wHUHL\$PLHLL$ \Ld$hL|$xL$I#NJ1HXI9]It$MMI<1IHA@HNIHHttI4HIH@LYHHHtMK HI{@IHHHHMt(A@HIIHIIHsAIK|H[D$PHILIH [H HEDXLH~ATLCSMl$Et ZLUH](J|tIMl$tXtfHĈL[]A\A]A^A_\H,H?DIAHE1LDxJA|$AAIAHHYMA|LktMHxLcMyC|MMiMK|IIuI?IYAJ HIM9uY t'L5H5HE1I>J'HH-H5lE1H}JHE1{XXXNYXY@H=ATSHHH9HM߿0HHYHIHYHHHHYID$(HYA$fID$I\$ AD$HL[A\ff.fAUIATMUSHHHHRHxHL[]A\A]LFHN(J|tbHLH<$ HHt$H<$HGtAU$LHt H[]A\A]A$ڀ@HEA$H11[]A\A]h$LLHt$H<$dH<$Ht$u>fH9UHSHHH~H5(HC  H9HMH9uMULC( ʈoEH{CHuH Hu(Hu7LMH[]fD t,H9~H辿tH} LǸȸH臇DHW(HwIH|1H9WHHA Hk1IHuy1LQIHuh1LQIHuZ1LQIHuL1LQIHu>1LQIHu01HLQIHuA H1II1HIHtLIAHHH?øH?fDAWIAVAUIATIUSHLN(H~I|HHHNHH6P^Cy HHHH?HH)LNSL9tHH55Mt$ H9HML9sA$ TVL9DHM\$(LwI_Cy 5IHHHLJ4AH)PLdO4HH)MLSH HHHHHLHHLHLfDHLLL[]A\A]A^A_\@HIƤ~L1IH(\(LHHHHHHLfDHCxqZ| HHHHHHiH)fDI͕PMB LI@zZIH*LIM)HWx/e9HHo#HH3HH)fDHS;\HHHH]xEcHHHH)wHWx/e9LIo#HHH3LM)QI?AAMcff.@w.H HcHfHwtf1HtЃHt1H1H1HH(A 1A!HI1IAHAEHw(Hff.fATIUHHHFt&H5H0tCH5rH0tHHL]A\/fDID$HHH]A\ID$@HH]A\ff.@HH=HfSHH.H>Hc HHH9wHC1[HH5H8-[@SHH$t>C41[ff.@AUATUSQHGH;=HH;= H;=H;=H;=H;=H;=H9=1L-ItHA/t$HHuHH5@AH:,ZD[]A\A]E1AAAAAAA@UHH@Ht H/u8,H}HHt H/u$,HEH]H@Ht H/u,ff.@AWAVAUATUSHGD$LgH=c1HT$,@=Ll$MImH=.HHHUHE0fH}HU@fo rEHT$LHEE M0E:L)H*\56:^f: H,L9LMH97Hl$`Ld$01ɺ1HIPL$ L$$L$~f.H'HciH OIOOLAfH $LL$@IMLLaMILH HH6ILD$XM0LL$HKTHɚ;mI?zZL9IvHL9IrN L9wIL9H @IK.HHtH|L,1HHuE1I,IT$(IM(1LT$MD$H}(L\$oUL\$LT$LcEp.HM(p4$1HLL$LD$D1HT$Ht$H[MHLLLLL$L$~H<$LL$-A$EuAD1Hƃ,fHqHt34$HLL$D1eHl$MHLʾHLHL\$LT$LT$L\$~L-IH|$0LLLL\$LL$H|$LL$LT$L\$MH+\$HI\$I9LʾHLD11L $IOH+H-H$ H)H^I9,I9l,LT$H|$XL$D$0L$LT$}L*X,B*ff.I#NJIHHJ1HHtE1IIALHHHfATUHSHH(LEJ|HHH9uHLHHMH6P^Cy IH)HHHMHH?H)HH|$8HTHT$HHFILD$HLHA$D#AuLkH[(J|D1HHH[]A\A]A^A_OZIH~IHY#Ll$LL$IMMAMQ(Iu(HLHLEu H}(/H|$8eH5EL}(H} I+IuM\$ML$(K|t33HT$HHH[]A\A]A^A_bHLLH<mHt$LT$H~(Mr(H|$ Hv9AI L9!Ht$ LD$8LLIM>"HLHT$(SHHD$8}IH"H|$({Ht$(HH&"u}H!LD$(HT$ LMHLHD$(|H|$(ѳff.AUIATMUHHu- u%MMcHLLH]A\A]lMLHHT$H4$5H4$HT$t H]A\A] 6HMH]A\A]!}AWfAVAAUIATIUHSHfo gHZL$HL$(forH$HL$XfomHNLD$L $D$`0H$HD$(D$0D$hL$xT$8\$HH9cHzLJ(I|D$IMIT$ID$ILZH9MOH)M\ND M9H)H $H|$`LH|$c H\$xMGMgL9LeLd$`H5ݱHU H9HMH9qE  H9E]MGIt$(IW(AH}(E8;L9u%IIxNJ N9MMpE1L>L+:AMWH#NJLHILVE1LH+BL)L9AI#NJILOILv1ML+RM)M9H#NJLHGIL~ML+rI)M9AEI#NJMLWItOAI#NJJ HL)J+H9AD$IH9IGEJIM9uT$I9sJFN4NMHH#NJMIFHDAJL9ML9 I\$L$H~H4H|7LfH5HU H9HMH9E H9bH]D$Dt$A DuJ'HH=ɚ;H='Hc{H HL4J|sH}D$`HĘ[]A\A]A^A_fDL?II9J J IL9H?zZH9-IvHL9HrN AH9wuIL9AEI Zf.HH|$sIH-D]HL$H]ALTE D]IAf.HD$`L,JkLH]}LWIDH TH9DI fDH=?BtA H=wH=MIt@Ic L92Ho#H9JIƤ~L9DI-LSHeN J|Ma%H5HU LI9IMH9SH]ED$dfDEmADl$KDE1H=AIfD$MMH]MGI\$L9D$LM@HGIn}DHEMMGIt$(IW(AH}(E8HfE1H=AI f.I]xEcL9AEIfLwISENTMIRHDAJTMXL9ENMI@HDAJIL9EуD$HIMHHDLL I9L9I#NJI9MIIHvIU(H|[MHMMD$LSHtJ|N$IIuE1D$HI H|$ADu$A}IwH|1I9OAMWL\$8M(ɐK|L|$0L$0LH\$(L[HJN L9IsH$H sIL$ADuUff.fUHHSMI#NJE1H HAL9D HIWLPHJH#NJLHI9AH9@A EEHOILHHJH#NJLLI9H9AD DӄsHOIHXHJI#NJHLH9@L9AD @@HOIHh HJ I#NJHHH9AL9A EE&HO ItNH#NJHv8uLL MMI9)M9 L HE1I9uDE1I9rL[]f1MH9vIN IhNN H9sJTIJTI9sJJIL9tIv8uLHI3H#NJI9AtIv8uLHOIIv8uLHOI!Iv8uLHO IIv8uLHOImkIAL HI9LJHZH9pJILIAff.I#NJ1HuHHH9vEtHHPL9AtHAfAUMATIUH]LLH]A\A]jf.AUIATMUHHu/ u'MMHLLH]A\A]MLHHT$H4$H4$HT$t H]A\A] 6HMH]A\A]off.fu u t  uHHHHH=ɚ;vPH?zZH9Hc H9Ho#H9I]xEcI9҃H='wHcw H ҃H=҃H=?Bw H=҃º H=wH=҃IvHL9H TH9҃ |ff.fSHBIHH1AHHtIILV(L^KDHL9v H~[LܳI)1[K4HHLijL)I)I$IH1HHvIDK˘HH[AUIATI1UHHxFMH}(HE шMH7HGHHE(LLH]A\A]饅H?H9'H޺fAUIATIUHSHH uH5TH9w HHM(EHEHHAHEH1Hɚ;w:H'wxHcH HLLHHEH[]A\A]ބH?zZH9w}HvHH9vUHrN H9HH9Ѓ H?B HwHoH TH9Ѓ VIc L9wcIo#L9w;HƤ~H9ЃHHI]xEcI9ЃI#NJI9ЃH?H9tHۃ[AVH AUATUHHHHH`L-HD$D$ Ll$ Ll$P1LL$(LD$ZYLd$M9.Lt$ H= 1L H|$ HgH|$H/ IAoL$H|$)L$ AoT$ )T$0Ao\$0)\$@L9PH}L5+L9HELl$I}L9IELIH M\$HAD$0ffo% M\$@HL$ IUAD$ HuI|$ID$LD$Ad$0HmImuL[t$H|$m=HXL]A\A]A^L9LEALHLfLd$HHE1LxMMAtLr@TKL9qrHEH HH)I9[HVH^(H|LFLNLL)II9-HxeLL2Mt$I|$1I|$HH9}HEHPH+UH9A MHLHL[]A\A]A^LLLL)觰HHMt$U$HLWt?It$I|$(dHPL}I|$H;}cHɃ@FI|$L1LTHMLH4$HT$H4$Hl$t)H[]A\A]A^HLL[]A\A]A^YtEtHLL[]A\A]A^7AWfAVIAUIATIUHSHXDI}M](D$ 0HD$PDD2HJD$(IVALL$fo HD$HH9Hֈ\$HNL$8I|H4$MMII)M+NMM9H9}IvHH)HI9H9H5HM H9HMH9tE H9=MNMM9H5hI|$ I9IMH9tA$ H9IMF(IUIu(Mt$(IH}(H$H1HHIEHH5Lm H9HMI9t I9H]H|Hɚ;8H'Hc6H EAHIcHEHH- HcLH1@Hh[]A\A]A^A_UAAHc݃@@AAAALaH}L HLL|HH1Hh[]A\A]A^A_L${Hm$H$b$A AAt[DLOlu)H[HH5H9u4SAN,HLLH?Cw`L uH}H5H9<H5HH5H(IHLHH=zI/H$H<$AD$H5~HD$,IHjLHH=5`zI/IMLT$=M|$LvHT$HH H=HT$VLL$HHD$LLD$,WHMHt$HEIQLL$HL$H~LHL\$Ll$LD$Mk I(uLGE|$,XH!H9$L;d$Ld$H,$M|$hHbHTLiL 1HH#CHdf.zf. u~?IHAN,LHH=)ImHLCH,$HH}(EI$H,$uH-~HEUoIHMH(ff.USHHH=yHHeH95~H=xJH;5H=}/H;5H=H;5H=H;5H=H;5H=HfH H8H;pu@htHKuQ 1H[]@HɠHYHiHy1!Չ)fDHlH`H|$"H|$SiH=}H5zH?>KfDHH=ZH;5H=?H;5ğH=$H;5ɟH=ß H;5ΟH=ȟH;5ӟH=͟H;5؟H=ҟHşH H8H;pu@@HW#uH;|HHfHY|HHH HHHH|@HlH|$ H|$`wyATIfUHxfo wHIyHD$pD$0HoHD$8D$L$(HHH IfoHXLIHLd$HT$PHHL$XH9uHL$@Ht$`LH|$hL)T$@ DD$AHD$ HD$AAt5HuHHx]A\HHHHfDAWIfAVAUATULSHH(LZLZMfo?L$H$ ISIxEP,H$ fHnfI:"PLCLL$D$`0H$D$00HL$XH$HDŽ$DŽ$D$L$L$hD$xL$8D$H)$AzLl$`LLʂH$L2HD$$H|$DŽ$HT$LHxL IHt$L$HHMHHJ0DAWHcH4sAVIIAUATUSHLHH,HuH IMMnMR DLHLV4I1II!I!f.HHLHME1H)HAMHIHH"HIILHL)I"IHHI)i H"L Hl H9c HHHHH)H"HHHIIH)8H"HH<LHL)I"I0 HL9fHnfI:"HI9DLHAЅ_IIE1II!I!IIIIH"HILHL)HI"LHHHH)HH"HAIAHHH9MHDHIHHH)HH"HHHHH)HH"HHIIH)IH"HHLH9HIHHH)HH"HHIIH)IH"HILHL)HI"L@@HHHH9]HTLIIIH)IH"HIMIL)II"LILHL)HI"E1LAIIH9fInfHnIH fH:"fI:"S[M9LHsH{LCH#MmE1H)AMIIIIH(HIHLHL)HI(LHHHH)HH(HAIAH!H9HIHHH)HH(HHHHH)HH(HHIIH)IH(HHHIH9MHIHHH)HH(HHIIH)IH(HILHL)HI(L@@HH1H9(LIIIH)IH(HIMIL)II(LILHL)HI(E1LAIIHH9v HH)IfDHIHH(HHHHH)H(HHHH)+H(HH,HEH9<HHHHH)H(HHHIIH)mH(HHqLHL)I(IL9HfHnfI:" HL9DHH H)HH HHII H);H HBMH9 HHII H)IH HILH L)I IHu L9GI)?HH H)HH HHIH L)HI LIDIH9HIHH H)HH HHHII H)IH H@H@HIH9JMAHIHH H)HH HIILH L)HI L@@HH H9LIII H)IH HMILH L)HI H"IHHII"HLI4H+H(IHHIH(HHHHH-H)H)H H IHHIH)HH)IMH)HH)H)HH)HXH)IH[]A\A]A^A_IH56H 7DHFH=.6LHT!HFHL$HЅB LD$MzDHAЅ II(HLIaHXH(HHHHI"HLI H"HIL H)H)HH)H$H)I t fHHHIAII!I!@LHME1H)IAM3IIIH"HMIMIL)I"LsILHL)I"LIL9cHZHHIHI)HHL9HHH"LHIIH)H"HsILHL)4I"LHH9H=@HHHMII)MdHHL9HHH(LHIIH)H(HsILHL)I(LjH9v HhH)`II H)IH HIMI L)II LILH9HHHHH H)HH HHII H))H HHH9dM[HLfIIIH(HLHIIH)H(HsIMIL)I(LIrWMu8L9v3HHIHI)pI^H)IAcHI)HH1HII>IhI"HL%I"HLI8IInII2H HHHH HE1H)HAH"siHIIHH"IHIII)IH"IILHM)HI"MALEIHI9sdHu_HHIIHH(IHIII)IH(IIMIM)II(MLLuI9rI)LHH H)IIH HILH L)HI LAHEIu H9OH)HD@AWAVAֺAUIATIULSHHHtHIt$ HZ VIHHIcH5cDLH,΋t$ /fHnE4$fH:"IAD$MIH I!H!IIIH"HMLIMIL)I"LsILHL)MI"IL\H9HHI9IDIHH)IAIEM\IHIIH(LMILHL)I(LsHHHH)H(HrHu H9gH)_II H)IHIH LLHHH H)rAH Hr)H9vHuHI9HL[]A\A]A^A_HHxHH`H:I"HL)IwDAWH`AVAUATIUISHT$HcL,IIH H"N1L!L!HL$H\$R@M1MLL)HIDI9OLITL)M9{HH|$\E1H)AH|$fIIIIH"HIMIL)II"LIMIL) I"LH Mc I9Z HHHHHH)HH"HHHHH)8 H"HsHIIH) H"HH M I9 fHnfH:"HAII9M I1Ht$M\LMBHHLHt @HL)HHDI9IHL)I9^LVfDL}IIIIH(HLHHHH)HH(HHIIH)IH(HAHEM;I92HHHHH)HH(HHHHH)HH(HHHHH)H(HJI9HfHnfH:"II H)IH HLHII H)IH HHDM5I9,HHHH H)HH HHHH H)HH E1HAHIu I9VHL)KLt$AMMLĨM)AIL)AIt_It&HLALIȃHH)H1L9vM$OM,$O,M$MILIȃIL)H1L9FILMIȃHI)L1M9M@L9vMOIKMILMI̓HI)L1L9vI4KH>KGH]IAL$LILT$(H\$ Hl$M!M!HMZIL\$L;|$LLHQLHHHL$8LH|$ IHD$HLHt$LfDHIpI ME1H)HAMHIHH"HIILHL)I"IHHI)H"LH^I9UHHHHH){H"HHIIH)H"HLHL)I"IHM9HIHHH)H"HHHHH)H"HHHH)H"HI9HHIHHH)H"HHHHHH)H"HHHH)H"HHAI9HfHnIfI:"A@M9IDHIHH(HHHHH)kH(HrHHH)H(HHHI9HHHHH)H(HHIIH)H(HLHL)mI(ItHM9HIHHH)8H(HHHHH)H(HHHH)H(H$L9&HHIHHH)H(HHHHH)[H(HbHHH)H(HHu L9+L)@fHnIfI:"AHM9*HH H)HH HHHH H)HH E1HAHIHI96H-HHHII H)IH HILH L)HI LIHI9HIHH H)HH HHHH H)HH H@H@H}I9tHIHH H)HH HHHH H)HH HHHu I9L)HI"HLI&HH"HHHHH"IHHYIPH"HHHHH(HHHHH(IHHIH(HHHHH(HHHH HhHH|HHIHL)HL)I%L)HL)L)M)^Lt$(Hl$L-2M9t%H|$0AՋT$IH AHH޾H|$H!I! Lt$HD$ H|$ HLAHHHIH|$IsL $LT$KH5HHHII H)IH HILH L)HI LIHI9HIHH H)HH HHHH H)HH H@H@HHI9}HtHIHH H)HH HHHH H)HH HHHu I9L)HI"HLIHH"HHHHH"IHHQIHH"HHHHH(HHHH}H(IHHIH(HHHHH(HHH HH`HHtHHAHL)HL)IL)HL)L)M)VHT$0H|$LHl$HÅ5L-kLt$L9t$0t#HAՋT$8LHHL$H>H9tHHt H==H5=H)HH?HHHtH5HtfD==u+UH=Ht H=odm=]wAWAVAUATUSQHH H@HH =C=HHHoH=L%TLIt$`MZ`H~LLN(Mk@H5H==IL<L <L-=BH=HGrI$H5H<H#rL=L5pLL=fL=L=L=jqH=jqH=jqH=ujqHHlHHqL=H=HLhfqH=mHLhAqHm)qH=kIH4qH5HiHHoHL1HH5hHpH(pH5tLhHx;HpI,$[pHm)pH=HkIHpHL91H EHKH5I#hH ;IHmHkHHoH:HLHsg]mHmoH=tjHHoH5HgHHnH=nI1H HH5iH:IHlI,$nHm]nH+FnH=2iIH|oLH5HHj!nHNH5LH<jmH9H5LHjmH f1H= H15hHn9IH"lHHH5L\jm hH9IHkH7AH581jHHlH1HgHIH}kHmlHHLHilHL B9McAH HK|Atkt;?@HH y7H71H57jH5H7H5i71iHL6L=4L4M'MAH5h61iHHkI1HdfIGIHTjHmkIWI7LHhkI H5)HH5W71;iHYH5TL%K1I$iH`1H=fHn7HH%kHHH5Lgi1H=eH7HHjL=H5sLILgViILH5^Lg8i1H=ZfH6HHjfo}HLL~H@ H H5 @LX(H"HEHE0H]8EPgh1H=oeH;6HHjHHLH!fo l}HX8H5 H@ H@(HH0@PHfEhL5-I.Ht1I~cHHSiI6HLcfhIH.5L#Mg1L5 M<LfH5HHHhHHLLfgHH@uH H5 LegH H5 LexZL[]A\A]A^A_VgfDATISQHt4HH3H jLctH CiHCZ[A\iff.ATH=41@Hj@,H=i4HI>bHHjjH(uaLA\ÐS1HH=ccHtSPHxHs @0PP[ff.UHVHlHHcHmuHD$-aD$f.?|zjlHf]dfATUQG u3HHXlH[eHmIuH`LZ]A\èuu,H=? cHHH5jE1H:`H= cHff.ATIUHAP 1uX]A\HuH}(*hHpZH]A\eD{ff. f.SH2HHH9Ft7At D[HV=qC(E1ff.ATUSHG HE1H-n0^H uEH}tZHuHcHHt#bpuD eH GaHpH H5 AH:r_D[]A\H ; H5AH9N_ff.ATUHQH~H5H9H9-1t\H9-1tSH9-t1tJHEH=^1H6_HmI pMoI,$uL^H HZ]A\H1HHo@,aoHe H5% H8~^1f.E1Gu LG(LG IL^AWAVAUATUSHHH(Hp{HŃ`IHjpE~ DH H==HD`IMpH}1E14_HHpH=/HE1LL1I_HEMt L L1L1L1H(H[]A\A]A^A_ÀeH|$HHE9L|$MoL]HHD$v^IHo1H;L$}/A<H $0Hc}]HH9H $IDHLH{ !]IH}(/ E H H=;l_IHn1H=#1E1]HHnff.SHHHt:HsHx(H Hs(DAD ˆoC@LKLH[fHHAU1H &ATIHHUHH0H- LL$LD$(D$ Hl$ZHL$H9HD$HHHQHL$HH8nHt$ L(4HL$HT$(Ht$4H= IHmLl$ Ht$HxLD$ Hl$HNIuHU~Im{mHmuHZt$ H|$u H0L]A\A]I,$uLVZE1HyH5H9#hmH|$ H/mAUIATIUHu+u&LH31]LA\A]1ɉ5LHLt:t]A\A]f.AU1H %ATIHHUHH0H-LL$LD$(D$ Hl$XHL$H9HD$HHHQHL$HH(mHt$ LH2HL$HT$(Ht$'2Hl$ H=# Ll$IHlHt$IUHxLD$ HNHu~HmlImuLXt$ H|$u H0L]A\A]I,$uLvXE1HyH56 H9#XlHmkff.AUIATIUHHu/u*LH11LH1]A\A]3LHLLD$8tLD$AH]A\A]ff.fAU1H %$ATIHHUHH H-LL$LD$Hl$VkHL$H9HD$HkHHQHL$HHkHt$LP0kHL$HT$H10Ll$kH=- H,$IHHkHuI}[1I|$1ɉs2Im6kHmt&H L]A\A]HyH5i H9NjHVАATUSHH`6ʉÃA8uJH uE@u2HH]4AtAkFAH`[]A\LCL9Et}AD)@uAʼnʉAA)9uLUL[MM~{H}LE @LK Hm(@L$0HS(HKH|$@H|$0@4$HLL$ LT$HLD$PHl$XHL$L\$HT$(HD$HD$8x3AE1MA1MA)fDAU1H !ATIHHUHH H-gLL$LD$Hl$3TiHL$H9(HD$HiHHQHL$HHiHt$L-iHL$HT$H-Ll$iH=xH,$IHLiHUIuHxGImNiHmuH-TH L]A\A]HyH5H9hUUHH`oFoNHF(H2oRD$oZHR(@HD$( $@HT$X@t$0Ht$0L$T$8\$H1HH`1ɉ],/ff.HHATSHH=HD$ RIHtHT$ HsHxD$ rhHL[A\fSHw t#[ff.ATSHH=HD$ IHtHT$ HsHxD$  hHL[A\fSH t3[ff.AU1H %ATIHHUHcH0H-LL$LD$(D$ Hl${QHL$H9pHD$HHHQHL$HHhHt$ L+HL$HT$(Ht$*Ll$ thH=Hl$IHrgUHL$ IuHxkImgHmt3t$ H|$[gH0L]A\A]ImfE1H>QHyH5H9.fUSHHAP|t  X[]f.AT1H SHHHHHL%)LD$D$Ld$OHD$L9t\HxH5eH9uzH=IHtaHt$HxHL$HVHst$H|$su%HL[A\HD$HtH(u\fI,$uLPE1SyHH5#E1H:0Pff.AWIAVIAUIATIUSH8 HVHF(H|fHl$@A}, LHD$dLffoifH$0L$0L$0L$0Ƅ$0H$(Ƅ$0L$Ƅ$0L$D$p0L$$$$$$$L$x$M9uH\$pLLH3eIM]HT$LD$LLH|$LKAu)M_IG(J|tHt$H<$LZLm(HT$0LLHt$ l$HLLL$Rc$'cc$bbD$PbbH []A\A]A^A_LtH L11[1]A\A]A^A_BH []A\A]A^A_HD$N"uu H L1[]A\A]A^A_ɕH LL[]A\A]A^A_dbAWIfAVAUIATUHSHH8 fo\H$0H$0Ƅ$0H$H$0HH|$hH$H$D$p0D$@0H|$$$L$x$L$HD$XcHT$Ht$0H|$8kKHL$0IH HcAMt$MELt$0Mm aMO(LLD$LAGr$MIGIGH|$ID4$J /HL$JHAHL$I)L$L$Lt$@LH$H|$ HDŽ$$HH|$HT$H|$HD$1L$0HHLcHMA|$HO$HI$HLD $IHl$ M$A7LHLHMIL$L$A7L$M9Ht$MHHHGMLHHHIGMLHLL:Au,$<$aLIH\$Ht$HHHHT$ILHLILLLL#:$M@M`_D$p `K`D$@g`O`H8 []A\A]A^A_M)HD$pHt$LLHL\$(HD$ Ht$(MHHt$xHt$ HHFIAE7IHk Lk ItIH|$H5 Ht$MLL$H~A9$_HD$HEy HHD$HLL$PHKH+ HYMTL9_HN\HD$HMYL)\$OAWfAVAUATIUHSHHfo WfoWHT$foWD$P0H$HT$HH)H5HD$xHHLD$ HD$ D$XL$hT$(\$8H^LML$ILL)HuOH^$LLHH$EA $@H[]A\A]A^A_ff.AVIfAUIATIUHSLH`fo VLD$0HD$`I$0LHD$(D$L$LLHLFILLLHID$?_K_H`[]A\A]A^DAT1H SHHHHHL%)LD$D$Ld$:HD$L9t\HxH5eH9uzH=蔿IHtaHt$HxHL$HVHst$H|$su%HL[A\菹HD$HtH(u^I,$uL;E1>yHH5#E1H:0;ff.AWIHAVIι AUIATUHSH Ld$ LAD$D%I(IwHTHoHɚ;H'HcrH LHHI;IWIWHZHH,ICHI;E^A},#^fo'TfL$H$L$L$Ƅ$0L$Ƅ$0H$Ƅ$0L$D$P0LL$x$$$$$$L$XD$hI9]MUH$Ht$A HsL9MUHEӃ]HL-#L} HuL9ILL9/MH{H4$H(H[]A\A]A^A_H(HL¾[]A\A]A^A_IL$I?zZL9HvHH9LHrN AH9II9EAA oH?BA HOHEAx*LHLp]LA\LLA]A^A_驭 uLLLFLHIM]A\A]A^A_è t{@AU1H eATIHHUHH0H-LL$LD$(D$ Hl$HL$H9蠚HD$HHHQHL$HHcHHt$ L8HL$HT$(Ht$Hl$ H=Ll$IHGHt$IUHxLD$ HNHu~HmGImuLt$ H|$観u H0L]A\A]I,$uLfE1HyH5&H9#GHm2Gff.AWIAVMAUIATIUHuvuPMLHLLu`HLt=x)LHL@]LA\LLA]A^A_y uLLLHLK t]A\A]A^A_AU1H UATIHHUHcH0H-LL$LD$(D$ Hl${HL$H9pHD$HHHQHL$HHFHt$ LHL$HT$(Ht$Hl$ H=辝Ll$IH5FHt$IUHxLD$ HNHu~HmEImuLdt$ H|$vu H0L]A\A]I,$uL6E1HyH5H9#EHmEff.AWIAVMAUIATIUHuPMLHLLauYHLt=x)LHL ]LA\LLA]A^A_E uLLLHLH]A\A]A^A_ wff.@AT1H SHHHH&HL%yLD$D$Ld$BHD$L9t\HxH5H9uzH= IHtaHt$HxHL$HVHst$H|$ïu%HL[A\ߕHD$HtH(u{DI,$uLkE1yHjH5sE1H:ff.AVAUIATIUHSHHpHRHH|$D$HH|$8HD$H)HL$HD$ HD$(HD$0Hs(fHnHT$PHfH:"CALHD$XI Ht$hLLD$`)D$@tNLt$@H\$\HHL(D$\u"HT$ILLHD$\D$\%A EHp[]A\A]A^LHH׏uA$CeLHHE uLKIL+ LMff.@AT1H SHHHHHL% LD$D$Ld$HD$L9t\HxH5EH9uzH=tIHtaHt$HxHL$HVHst$H|$Su%HL[A\oHD$HtH(u+BI,$uLE1yHH5E1H:ff.AVAUIATIUHSHHpHRHH|$D$HH|$8HD$H)HL$HD$ HD$(HD$0Hs(fHnHT$PHfH:"CALHD$XI!Ht$hLLD$`)D$@tNLt$@H\$\HHL踤D$\u"HT$ILLHD$\D$\%A EHp[]A\A]A^LHHguA$@eLHH膌E uELKIL+ LM@AU1H UATIHHUHCH0H-LL$LD$(D$ Hl$[w@HL$H9PHD$HV@HHQHL$HHj@Ht$ L$@HL$HT$(Ht$Ll$ @H=螖Hl$IH?Ht$HUHxLD$ HNIu^Im?HmtI,$uLkE1yHjH5sE1H:ff.AUIATIUHSHHyLLH賠EuoHU(Hu1H|thH9=HHtoHk H1HHtA|$(ID$tHI+$H+EIHH9LNLLeH[]A\A]HH1[]A\A] HvHt$uHt$HLH[]A\A]fU1H 6SHHHHHH-ZLD$Hl$+Ht$H9t,H~LL9uDH{HlHH[]HD$Ht?HHt$HQHHu1MLIJ4IHHL]A\A]E1L{fAUIATIUHHu2HVHF(H|tLt$IHuHMIVIuHxLD$ Imt)I.t-t$ HR`H8L]A\A]A^LyLoImu LE1[E1@AV1AUATUHHH5dH8HL$ HT$(D$ ߼HT$(Ht$H HT$ Ht$HLl$t{H=l=Lt$IHHMIVIuHxLD$ ѭImt)I.t-t$ HQH8L]A\A]A^LiL_Imu LE1KE1@AV1AUATUHHH5cH8HL$ HT$(D$ ϻHT$(Ht$HHT$ Ht$HLl$t{H=j:H](J<#mf.G}HG@HW0H|ff.AUATIUHSH(L- YLl$(HH(H'1LD$LHH ezHpU詩HD$L9uHH\$H=ZfHHtbH|$1HHEHH]HHH([]A\A]HxH5]H9t芭uHXH5KH: 11SHwH1JHtH(HCH[QHw1JHtH(gHWHZUHHS}H}J}H]AVAUIATIUH(D$ 'H:H(H LHt$H1*Ld$toLHt$H1Ll$twH=[,Lt$IHHMIVIuHxLD$ 迣Imt%I.t)t$ H@u5H(L]A\A]A^L{LqIm}Ld$I,$cLE1GDAWLAVI1AUIHATUSIHHHyHHLUfHLQH)Mu81LH=QLҧImI,$H0]A\A]A^A_ImuL迥I,$_L謥1HD$(I/!HD$ L舥_AVAUIATIUH(D$ #HH(HLHt$H1Z~Ld$tsLHt$H1?~Ll$tqH=?W)Lt$IH4HMIVIuHxLD$ ?Imt)I.t?t$ H<H(L]A\A]A^L觤ImLd$L苤fAVAUIATIUH(D$ "HH(HLHt$H1Z}Ld$tsLHt$H1?}Ll$t{H=?V(Lt$IHcHMIVIuHxLD$ Imt3I.t#t$ H;EH(L]A\A]A^L解L蝣ImLd$fAVAUIATIUH(D$ !H3H(HLHt$H1Z|Ld$tsLHt$H1?|Ll$t{H=?U'Lt$IHHMIVIuHxLD$ OImt3I.t#t$ H:H(L]A\A]A^L觢L蝢Im;Ld$fAWAVIAUIATIUH HD$D$ HkH(HQ1Ht$HLL{ELHt$H12{Lt$L;%^Pu{H=%T&L|$Ll$IHHMIUIvHxMuLD$KI.ImuL袡t$H9uwH L]A\A]A^A_1Ht$HLzkI.cH|$H/uMLd$MWILL$LI/mL `I,$0LE1nLBI.3Ld$MLd$CDATIUHSH Ht^H(H HRHHiHI9t2Ht21HL1͢HmIuHkHL[]A\IE1DAWAVIAUL-GLATfInUHSH(HD$hD$T)L$^Hx H(Hp1HL$hHT$`HH5J蝢H H|$`HG Ht$XUHH L|$XD$ M~ 8 DCPfo\$H$ fo$L$A$E)$fDŽ$>-A AGD$DUE +D$Ƅ$}tHDEZAX A^N fDŽ$ DeEl$A 1A^ L$ AuNՀW @ M E}A0 LICD{A}, A}.AE߀E$vH$H H蘜|$ HD$XH 1H˞LI0pL(pH|$pHJH(L[]A\A]A^A_vIHHsHxHL$ HU4t$ HX$HL[]A\@ATUSHHD$ X HH(HH=>IHsHsHxHL$ HUTt$ H#BHL[]A\@ATUSHHD$ HDH(H?H==vIHHsHxHL$ HUԛt$ HX#HL[]A\@HHHGHtHAWHAVAUATIHUSHfo1fo HD$AD$HT$H\$ foHt$(D$0HT$XHL$ D$`H$HD$( Ƅ$H$D$H|$L$8D$HL$hD$x$$L$L?IH?HHIt$ L|$H;LLH\$0H衔H$HLMMHHt$LH%AeLLHHEfo`HIXLIL$M)$蛑LMHHHWLH輄IAD$tIIT$9AEt/tLHt Et/tFMt$HL[]A\A]A^A_I}(7AEH}(7EL7H7HLLHhH\$0Ht$`u/ u#kHLi/pI:E1\Lw6H5@.II:茈=AUHATIԺUHSHQLo(H^HH6HC(HEHK HH u'AoMAoUP#Hk Z[]A\A]HLHHH^%6HATHHDIHk6IHt+H1Ir LHHAtAtfAtLA\f.@t(@8u@tL¾XDAUIATISHHLO H55HfHnHHIHfH:"HxHH9HML9}fHnHCfH:"OM~LDHw(OILHCI#NJHy H[A\A]LG(M$Hff. u1UHSHHAP =UHUS(H3NAY[]@UHH3HH(H HH]4ff.UHHHH(HHH]4ff.AUIATIUSHXHD$D$ H'H(H1HT$H5(0LއH|$HHWHD$D$ foBfo JHD$HHD$D$(L$8谅HHH=6IHHH?H9tHHHt$(I|$IuHMHT$ LD$ 謔t$ Hpu#HXL[]A\A]úHLN3II,$uLE1HuH=46IHpH=2H5*E1H?fDHHATH=5IHt-H@@I|$HAd$ID$0ID$ LA\USHHrHHsHH1H=/!HmH[]ff.@UHHcHH(HHH] 2ff.BUSQHVH;\UHu/HvHO9@ǃAD8nH1HZ[] tH"uHMHk0Ā{HT0fSHTHHH9Ftw"At D[HV=$C,E1ff.ATHHUHH(Ht$[Ld$HLI,$H(]A\fDAUL-QyATLUSHHW,H$H~xIS(LyL_x{8HcS4H)HK HsHDKPP1ATLCUWH=N(H H[]A\A]ff.@AWAAVLwAUAATAxUH--QS1H(f[H|$Lt$D$ =HL1IcLH0-!D9HcA)IHHt$DD!tꩺt|$ uD$ L9t$tIfA]IF+D$H([]A\A]A^A_@AWfIHAVLAUATMUHSHHhfo 1IHD$`$0LHD$(D$L$N7cLt$0L9H IWHs,H\$LD$TH9HLʉt$\LLHHL$0H9ILLHH詇LLHH/$ |$LA <$@A<$Hh[]A\A]A^A_f.SHHHHHHHs[H9HCHHHH9v/HUSHQHoHHHHrZ[]1@AWAVMAUIATIUHLSHXIwHXM[]A\A]A^A_wMXHML\$IJL)HHD$L<HT$M9H|$HHL$HHHt$HLD$ JDBHL$LL$ LL\ M)MQLL$0LLLT$@LLL\$(HHD HL$8Ht$ LD$@HLHD$8HT$(MHLHHH4Ht$(H1}HL$(MIHT$ Ht$HIHH\$LHI<yLHLH\$H1IHHIHj}LD$0LLHLHMOH|$HLHHXLH[L]A\A]A^A_Iv8u1E1I#NJHtffLHHLLI9wL9wHDH9vE1DLHDH9v AH#NJHH:HH9tH:fDI#NJ1E1Htm@LLL)H+ HI9sLHLH9vA@HLH9v.E1H#NJH:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}/builddir/build/BUILD/Python-3.8.20/Modules/_decimal/libmpdec/mpdecimal.clibmpdec: internal error in _mpd_base_ndivmod: please report%s:%d: warning: as_integer_ratiobit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtuplecollections.abcMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContextdecimal_contextHAVE_CONTEXTVARHAVE_THREADSBasicContextExtendedContext1.70__version__2.4.2__libmpdec_version__|OOOOOOOOINITY-nanargument must be an integercannot convert NaN to integerinvalid signal dictargument must be a contextF(i)OO|OsNaN+Infinity+Zero+Normal+Subnormal-Infinity-Zero-Normal-SubnormalO|OOargument must be a Decimalargument must be int or float(OO)numeratordenominatorexponent must be an integer%s%lisignal keys cannot be deleted.,format arg must be strinvalid format stringdecimal_pointthousands_sepgroupinginvalid override dictDecimal('%s')O(O)O(nsnniiOO)%s:%d: error: %s, TrueFalseROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCcopyprecEmaxEminroundingcapitalsclamp__enter____exit__realimagexplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmax_magmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftas_tuple__copy____deepcopy____format____reduce____round____ceil____floor____trunc____complex____sizeof__adddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscreate_decimalcreate_decimal_from_floatgetcontextsetcontextlocalcontextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYdecimal.SignalDictMixinotherthirdmodulodecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.ContextManagerctxdecimal.Decimaldecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampeddecimal.Contextq(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"!   @ @ @ @ @ @ @ @ d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJDecimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. localcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module?B  ?Bc c @?d d ]xEccd XLIcd cd KK9$|k?䌄_wC_"@CCKvl?x?;ll` tHAHg4]\X A\hk\(xf%T P !P!!d"k# $:p$%Qd%T%$&&!&X''|((T))T*+\+,w<-h--P./h/`/g0px00,1t11i H2 2 2 3 p3 3 X4 4 5` 5 6 x6l6yd7088 l9:`::;\;y;<<<<\=e=h>W>D?7?@JP@@A*LA_ABgB@CCC0DtDAD{EELFF8@GyGG0HH1HrDIIIXJDK"K=",L~"L"LE#M#N#xN>$NN$ O^$tOn$O~$O$`P$P$Q'%XQh%Q%R%XR&R^&S&tS&S!'TT'T|'U'TU'U#(UV(LVa(V(W(W+W+X+X,Y:,tY{,Y,$Z,Z>-Z-H[-[-[-4\2.\e.\q.]/ ^/^0_ 0_0_0`+1`'3`.3Lae3ar3a3 b3b3b4c4pc5c|5Tp>pT>\qY>q>q>Pr@r@scBsBsBtBptBtC8uCuD8vJDvODwhEwzExEx1Fx\Fy]Fy)GpyoGyIIywL0zQ|zU`VV`_8b cHPghiHPi\sPuPz||}`|P (x@(`pL4Pl4 0h @h!!! ",#p#`#@#P%@,(( ) )p)0)t*0*p4+pt+++,T//P02=x=>h@@F`J xJ \4]^_0_P4`@`bc !c0#f`#ip#(i#@4>> d??$@@@ A0hAAAA4BxB@BpCXCC D`HD`DD@4E`HE\E EEF0hFFFG\GGG@LHphHH I`I@IPIKKHL@LM@M4N` N N Np O 4OP XO O Op O PP,P|PP0Q@tQQRtRRPR`8SpSS 8TxTTp UpU UV tVVp 4W%W&8X'X(X )$Y0)8Y@*YP+Y`,@ZP-dZ`.Zp/[0d[ 1[1\`2P\3\3]3]`7@^8^ 8^84_8`_9`9a:ha:a ;a@;aP<0BAD D0  DABA 0@8qBBE D(D0DPM 0A(A BBBA HDP|hTd BBB B(D0D8J 8A0A(B BBBG  8K0D(B BBBE  8I0A(B BBBE ;;L$BED G0_  JBBE h  ABBA J GBELXd3 BFE E(D0D8G 8A0A(B BBBG $4AG AC Z"G(0&BED RBBLH4BED G0a  JBBE h  ABBA J GBD(,kVVAD0P AAA gl=D 8A0A(B BBBA <0J$\0:BDG0iAB00$0:BDG0iAB00(0BJT0 DBA 1(08 1̬hBKA A(T (D ABBA \1q:0x1cBKA Tp  DBBA 1[:p1101BHA L0h  DBBA $230 @2l`V0s A K B D<d2BED G0d  JBBE r ABB82BDB A(Q` (D BBBA 2(`2DB] A 3,38@3BDB A(Q` (D BBBA |3 (`83 BDB A(Q` (D BBBA 3A`03lBDN D@  DBBA $4)@0@4 BDN D@  DBBA t4)@04BHA L0d  DBBA 4304+D b A 04BHA L0d  DBBA 05Z308L5P BDB A(Q` (D BBBA 55A`05BDA Q0  DBBA 5& 005XyBLA G0B  DBBA (60D6(X6uBDQ0 DBA 60L6PBBE B(D0D8D 8D0A(B BBBA 6B 7BHB B(D0D8D 8G0G(B BBBE S 8A0A(B BBBE  8A0A(B BBBA  8G0A(B BBBE  8A0A(B BBBE ' 8I0A(B BBBE P7oZ 8A0A(B BBBE  8F0A(B BBBE 8,80 BDB A(Q` (D BBBA h89(`88 BDB A(Q` (D BBBA 8 A`H8=BIE E(D0D8G 8A0A(B BBBA (9<@H9mBDB B(A0Qp 0A(B BBBA 9p|9BEE E(D0D8GPK 8J0A(B BBBE @ 8A0A(B BBBA d 8J0A(B BBBE H,:wPf 8L0A(B BBBE a8C0F(B BBB0x:TBHA L0h  DBBA :30@:sBDB B(A0Qp 0D(B BBBA  ;oOp,;M]b A LL;`D0y A h;4WD0} A ;F0;dWD0} A ;&0 ;sAR0y AA ;WD0} A <0< `D0y A 8<dWD0} A T<0 h<jAR0} AA <~0<ȽpD0I A 0<BHA L0h  DBBA <&300=lBHA L0h  DBBA D= 300`=BHA L0h  DBBA =308= BDB A(Q` (D BBBA =A`0>ĿBHA L0h  DBBA <>308X> BDB A(Q` (D BBBA >A`8> BDB A(Q` (D BBBA >|A`8? BDB A(Q` (D BBBA D?eA``?<18t?h BDB A(Q` (D BBBA ?:A`8? BDB A(Q` (D BBBA @#A`8$@ BDB A(Q` (D BBBA `@ A`0|@BHA L0h  DBBA @30<@BED G0d  JBBE r ABB8 A0BDB A(Q` (D BBBA HA(`0dABHA L0h  DBBA Ap300AHBHA L0h  DBBA AS308B BDB A(Q` (D BBBA @B.A`0\BPBHA L0h  DBBA B300B^BGA L0r  DABE $B 0D CAB0CBHA L0h  DBBA A`0GTBHA L0h  DBBA G/308G BDB A(Q` (D BBBA 4H A`(PH\BGL@b DBA |H @0HBHA L0m  DBBA H300HBHA L0j  DBBA I30(4IXBGL@b DBA `I @LxIBBA K BBE W EBA A HBE AHBdIDEBBB B(D0F8F 8A0A(B BBBE  8A0A(B BBBA 0JPJ;lNHhJ}BBB B(A0A8G` 8D0A(B BBBA JZK`<JBBB A(D0N@l0D(A BBBKE6@(4K(AAD0 AAE `K,A\0xK4~BDC G0e  AABA K0(Kd@ADD n AAA 8KxIDG D0J AABAA00Lg0 LLD  C O A pL (L8BHG ABA L{LLBIB B(A0D8J ' 8A0A(B BBBA M @8MBHB E(A0A80A(F BBB|M"M#8MBBD D(DP (A ABBA M7PMP(AfN 0NL(AfHN \NPAY8xNT BBE D(DP (D BBBA NWDPHN PBEG M(A0A8G 8A0A(B BBBA O3.[P0RH{BDD D0[  DABA 8RE0lTRxBBE I(F0H8G  8D0A(B BBBA AEAhARARfHRBBE D(A0m (A BBBA e(D KBB<0S@0A (D JBBE V(D EBBpS,FAZ A ]$S,/AGE _AAS  HSBGE B(D0A8G` 8A0A(B BBBA T<0T G$DTHdBID0NDBlT&0$Tx{BAG0jDBT0,T|BAA G0i DABT,0,U|BAA G0i DAB@Un,0,\U |BAA G0i DABUN,0UD U@ U< U8HAk A ZV(VP^AGA h AAA HVL\VWLB B(H0A8G 8D0A(B BBBA Vs@8V}BEI D(D0T (A ABBA WW204$WXBEI D(J0s(A ABB\W5=0xWWBWVEPWW;0W4BED I0  ABBA X^0$8XLNGH gFA`X̸>Aa A ZXX5AG _IX D CA X5AG _IXw D CA <YBED A(D (D ABBA XY6 tYYIBF$YAAAG0uAAY0Y5AG _IZ D CA ($ZDAA G AAA PZ hZ|Z Z PZ=BBB A(D0D@HQPCXM`Y@\ 0A(A BBBA Zv@[ԷOAr A Z8[5LP[BBB B(A0A8G   8C0A(B BBBA [ [ BAg A [N$[(JBGL@qAB\-@L4\8BND A(JZDEAPG(A ABB\:D\|BEF H(G0H8F`8A0A(B BBB\`H]BLE B(D0D8J8A0A(B BBBT]U7\t]ȹUEO E(D0K8 0A(B BBBA lA8](9Ap]^4^PA4^PA0L^<JAD bAAAC `^ BBE E(D0G8DJ 8D0A(B BBBE 8G0D(B BBB8^ 8A0E(B BBBE  _L4_gH_H\_05BHB B(A0A8D` 8A0A(B BBBA _D`H_ BLH B(A0A8JPp 8A0A(B BBBA `:P4`hH`\`L(p`\DBEG qBB` H`{BBJ E(D0D8GP 8D0A(B BBBA a>P$aJD8a BIB B(D0D8' 0A(B BBBA a8(aFBEI qBBaL La BMB B(K0H8D 8A0A(B BBBA 8b{ XbdABKqBL|b BBB E(A0D8Sn 8D0A(B BBBA b<8b BBE D(G0^ (A BBBA (c0LHc7BEB B(D0A8Gp 8A0A(B BBBA cC,cp_HNI {ABALcBGB B(D0H8G 8A0A(B BBBA `>@,<3@<0R8 m@7 @3! @13`/=``.J--V5-a:,mX@*ta`){d@' %@$v `5#00`0@qxx@xx@w w0v`vuu ut0`tr t`ts us~@sr re rqj `q#0qpp+И`p7p`o@n$Ь@n-kOk3qj9 qjiS `i`pijЇhv0@hg}gp gЉf0`ff>PVse`x`eEy e0ydP`d dcR`ccvb!w b3yaJaV`aa am`= ``t`{ _`~`_l@t _Z^xz^~@] zP`z yc c XLI8>{@+B B B B B B B B B B B B B B B B B B B nB Qy _nidwfrnB nB B B B B B B B B B B 5-NFia{B B B B H(8s @s  ( @80H@_decimal.cpython-38-x86_64-linux-gnu.so-3.8.20-1.el9.x86_64.debuggї7zXZִF!t/oo]?Eh=ڊ2N7k11C!H)cz[yY/tNK6wqQ;eiz8}a`&h9o1~:*eX:ߑuRa\b7k/+ҍy3EŌI u5Ă`C,&ޑ1NF:+]CMSNn- GQi7]r鏋+9=%pg}=3i^b)ViɎ߭Ȓ6? _;,iO,"ޡo[Ӽ`hxJC\zkAs[_M#z-e $z, ~vZK&9D^IZ|"[l3cZ^GhY&ecAJ,c7uRg&~ ū& ng 'F@7>HhoiMsLffhƎk|_ xJ!l9Fq{r/ 349y\i; f%+?' +l>Si݋Ii]%j(h_~ =M]pPVѺ9T WcHV- NȨ/ 'L3uxZ*I86qHח-tlcDDq-mJeqrS@&ؑg[w+Bl'=uy ׌i}wԿ4$,."d0"QelLeJ)ф3VӅ{M="̣^ n>{O-U%rvkbT:1e:dhhY!|gd 1^(L J)zdmldb1}m+?i"1j~>ʔ +WB@rPeO ևXM7E#͂0ax[''+QY8#)6ZEط11H W5Or4JO<V?Db )*\ɔOomr2olk9 kE;,Ĺ:<$k))p/ r&ŸY[^^<܇R _Z2vbu M+`D l8Z¯O?bLaywަ]N /l^y/5OXc9־&J8vcS7BB%HFK7bf7!~ ŃjM}rpE}<e~6*G|f  pK+ *O!=OEc~.O:0]UngeֺNg%DZԾ{ݺYĩ'zk-oJO쿪o`}kQKjwTsϩT[nZP:]N`7oe쩀I>@Ti.8V?&Y-ft"ZP2s!kc(Z5̑QlA eiohBFܐThzaGpn9-{Fnmx?@1B|X~|˝23騤lrnYzvWn%? k,x`jbzӔO`P-(^!j쓫],V"LùS{ }/QK iSIE{:J?m@b4i 7Pjbz ԅc-g<.etG!ƢoYuAYTbNNDx-_Ve xw6}D,QÁ=?_n*ռ"i̐⹷T{>CX{Yp}Q負"0jW.C95z%+5S_Y%5Y eEb7cKhqH"$wt&,;' ;6@aLH?1T.Żulۉ8'txmd9+W?k؝~\gO>족AVn';&v9N8N]#ͯ٣JVn!``[ulŬCqB~a82@{~ˌ[ jCWҗhK4{`' U#R,bvTkR~m E]=}榕__s2mWzoM:%p\? ##p|-Z`}ɛ3]QMx]43:S2%:Uۭ` !I亿R_h!GHĄR NEg[o Jv9pagL:`2e܂mgf#ջ /^% 1JDM+vټT؟M}Mp#:D/5 G*u7*:RL)ǔ}n0d1%Ya|bhVBBĪ}ЧdVv}ů()=%ܣXeD{l_1e4k":Oi1XƑJYo^Eߑ)p6L=YpA$5 rh< F~ 3Oԉ!/G r?lT P (h42RqlO,bEw˜ cJKk4#Dh}KIy`wcU&(Jw-$h5Z @j$Cu,+b̰ofQJR9Rpk99pa9VZ{TCż|;^69z@jhGn|m)i4JqU.A "j&ٲ9%(W,;Yl|7$ F/W”*Do"IMٱ)vX'E  Yw--ai!i*yv!.Zs'ԫ߇ߠFYqHipn(_$cDŞijV!SEL?;&~<}h/~[j fz/1'&1^gQ SdᡲpZL}=;a4ErAZIV%-ko\%ZHŊP.0 ZxHuLڢ)XHn|UtxGR8Q1L>NLZu,Qb{w"%Sښ݇ѕYKeH$[(2cv퉍ǰ ~cUy-ś@T ~ `\FAq߃?2ޡ&QssP~ tr&mx^8I(FɿCy& m&/{. ed-f7NeX)ˎ&=lP2xɧ=!0ͺz#@)-|’M؊mz_9KOj`{ G"+onyC$K( u.|KB;cfߗ@?ÿC$q?@ZW[F |lm*doЫjlFBk$cqD3lV%>``R2MD-##:4kmfogm5ly]/cA1qx9F'vyKۉ=e:'=2%8-  5r(;!gSbe1hSo5nȺ11`J`Ir^J;cˑgwK YߴDs(N/t,:%5z{y&>vQ0^x(HV Ro7mkP2ݘFUѦDsaZO UWQ!(Mf Ŝ0i5l3+)2^ߔ,*/$ySP6"m%3QҁZh\MTW[(h@ofE;ȯz,5)%PR,!or| {0?LG>o'XM2#Lji%dsJr D(!=K IڣK%AMݯo8q? l rFRXyM4_.Aw Rߤ9FkD JؼuZ'9fg>Ʋ y݋03r:AzS^2_xg_ߤQq]g x'Hw)Rj "Wy\_yf'֕gנk廙 RE Wup$'X$nxg>.[8z)CjOZǵIՇ4e)1|)*:9/frLc.ryK˪K:Mxˠ.e\TnW[w i[ ߫oDAH 䬽 ;CSIή!xHw¯~G}jw?Q;]1~#;ݗYHGƋ@(=*yI=Q,4DMp=eƶpE Iz+N;.NJ,}CnQ̲miLDpDa|qRXm<HMa>^>JfM/2c ]?^aU\(Hot_HPZWS9$t6S:Eg"[s kCK{1/g1]:,ێOIkfO}vMcB\~&6T p$~)y!x8BZ* bjHZN 3F fo~6v:5=dQ05JiEM+1'{o`ۯG]-eO]ۿ}/}{f(F/GfY8п%%n C|p$(<ڧm;_`@릈JPi~;ni6dpQˤ钍h gIngѶ}?5ej1ӁQJwv$Xy$"T}&1'ak/h<9+LUg֗ @/H07) A\qR2%lՋ[.cH  l9Ԣhzi6U~e̅FiVΛ4s<>h-W{ǫtqx=`W6*vVm'c /q0gYZ.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.gnu_debuglink.gnu_debugdata 88$o``$(  0B8oRREoHH@T=^BTTh``c ` `neeNt00 z| ||l00\gh H H8 8`# `3`# `#H#@;