ELF>k@8@8 @^^``````{{ $$Std Ptdhhh QtdRtdppGNUGNU !V}ڒa@||G~hk x{= %UH`d}DWW49Pd|$Yj  "p%:gb72j+qj ^{:R{-#V, F"C OQ@  __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyTuple_Type_Py_NoneStruct_Py_TrueStruct_Py_FalseStructPyObject_FreePyList_NewPyList_AppendPyList_SizePyList_GetItemPyExc_KeyErrorPyErr_SetStringPyDict_SizePyObject_IsTruePyDict_GetItemWithErrorPyErr_OccurredPyExc_TypeErrorPyExc_RuntimeErrorPyExc_ValueErrorPyUnicode_FromFormat__stack_chk_fail_Py_NotImplementedStructPyErr_ClearPyDict_NewPyDict_SetItemPyLong_FromSsize_tPyLong_FromLongPyLong_AsSsize_tPyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyObject_GenericSetAttrPyExc_AttributeErrorPyObject_CallObject_PyObject_NewPy_BuildValuePyType_IsSubtypePyContextVar_SetPyMem_Malloc_Py_ascii_whitespace_PyUnicode_IsWhitespace_PyUnicode_ToDecimalDigit_PyUnicode_ReadyPyErr_NoMemoryPyTuple_SizePyLong_AsLongPyList_AsTuplesnprintfPyMem_Free__strcat_chk__snprintf_chkmbstowcsPyUnicode_FromWideCharPyUnicode_AsUTF8StringPyLong_FromUnsignedLongPyUnicode_FromStringPyObject_CallFunctionObjArgsstrlenPyTuple_NewPyErr_SetObjectPyUnicode_ComparePyArg_ParseTupleAndKeywordsPyContextVar_GetPyArg_ParseTuplePyUnicode_AsUTF8AndSize__ctype_b_loclocaleconvmemcpy__errno_locationstrtollPyDict_GetItemString__ctype_tolower_locPyUnicode_DecodeUTF8memmoveabortPyErr_FormatPyFloat_TypePyFloat_AsDoublePyUnicode_NewPyFloat_FromString_PyLong_NewPyExc_OverflowErrorPyTuple_Pack_PyLong_GCDmallocreallocfreePyComplex_TypePyObject_IsInstancePyObject_GetAttrStringPyBool_FromLongPyComplex_AsCComplexPyFloat_FromDoublePyComplex_FromDoublesmemsetPyInit__decimalPyMem_ReallocPyLong_TypePyBaseObject_TypePyType_ReadyPyDict_SetItemStringPyImport_ImportModulePyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyExc_ZeroDivisionErrorstderr__fprintf_chkfputcPyContextVar_NewPyModule_AddIntConstantPyUnicode_InternFromStringPyModule_AddStringConstantPyObject_HashNotImplementedPyType_GenericNewcalloc__memcpy_chkstrcmplibpython3.7m.so.1.0libc.so.6GLIBC_2.3GLIBC_2.14GLIBC_2.4GLIBC_2.2.5GLIBC_2.3.4/opt/alt/python37/lib64'ii 1;ii Fui Pti \lpllllllllmmHt~~8XiX-Y!iY.`Y&ihYxY8Y*iYY8Y-iYY@7Y3iY`Y`6Y>iY@Y5ZHiZ Z4 ZRi(Z08Z@3@Z^iHZXZ1`ZpihZ0xZ0ZiZZ/ZiZZ.ZiZ`Z`.ZkZZ-[i[@[ - [k([8[,@[iH[ X[+`[ih[x[*[i[Z[&[i[[%[i[p [ $[i[@n[`#\i\Pn\" \i(\n8\`"@\iH\nX\!`\jh\nx\!\j\o\ !\j\@o\ \j\po\ \"j\\],j]P]  ]9j(]w8]@]iH]oX]`]Bjh]ox]]Lj]P]]Rj]] ][j]]`]gj]] ^lj^^ ^{j(^8^@@^jH^pX^`^jh^7x^^j^:^ ^j^ >^ ^j^PC^` ^j^F^ _j_pI_`  _j(_L8_@_jH_PPX_`_jh_Sx__j_0W__il___k_0_ _ k_`&_`k`- `'k(`-@`4kH`@``?kh`l`Jk`p*`Tk`e`]k`f`gk`0gaqkag a}k(al`a hapa@xapaa aнa apana0-aHbPbbkbbkb`bkbwbwckcwcx0ck8c w@c0xXck`cmhc@ckcwcyckc0wcpydWjd mdV d&i(dn8d@V@d*iHdpXdU`d-ihd0rxdUd8idsd Ud3idudTd>id@wd`TdHidzdTeCiexeS eRi(eP|8e S@e^iHe~XeR`epiheP|xe`ReieeReke`eQeieЋeQeie`e QfkffP fk(f8fP@fkHfXf P`fkhfxfOfiff`Ofkf0fOfiffNfkff`NgigPgN gi(g8gM@gkHg@XgM`gihgxg@LgkgpgKgkgg`Igigg Iglg@wg`Hhlh`whG hLj(h /8h`G@hiHh.XhG`hihh`1xhFhih02h@Fhih3hEh"jh/hEhjh3h Eiji4iD ij(ip58i`D@i,jHip0XiD`ijhi@6xiCi liiiip.i`CiRjiAiCili 7iBj[jj@j`B jgj(jE8jB@jljHj@XjA`j{jhjDxj`Aj lj`jAjjjj@jjjj@@jjj@j?kjkk? kj(k@8k@?@kjHk@MXk?`kjhk@cxk>kjkRk`>kjkk>kjkVk=kjkZk@=l.llPml= l:l(l0m8l<@lkHl{`l?khl~lFll{l`<lKlll;lZll0l:mgmg mg0mg@mgPmg`mtlhmzlpmgmtlmgmtlmgmtlmgmtlmgntlng ntl(ng@ntlHng`ntlhngngngngngngngngnkngokog0o|i8ogPol`o7nho6mpomxo6mo6mo6mono6mo6mo6momomo'nosomokokokokpkpkp4lp@l@p6mHp.m`pOmhpGmphmp`mpmp{mpmpmq6mq.m qm(qm@qmHqm`qmhqmqmqmqsqmqnqnq'nqnr7nr/nxrlrmrPr`ar`hrs9(s^Hs`YXsXstl0totbumupmu}(v}0vy8v`zPvVvdvbvv`{@wiHwjPwo`w&ihwkpwgwtlwgwtlwgwtlwgwtlwgxtlxg xtl(xg@xtlHxg`xtlhxgxtlxgxtlxgz&szz`zz1szzz{ABCEGHIJKLMNOQRUV W(X0Y8Z@]H_P`Xb`chdpexfghjklmnoprstuvwxy{HHqHtH5%hhhhhhhhqhah Qh Ah 1h !h hhhhhhhhhhqhahQhAh1h!hhhh h!h"h#h$h%h&h'qh(ah)Qh*Ah+1h,!h-h.h/h0h1h2h3h4h5h6h7qh8ah9Qh:Ah;1h<!h=h>h?h@hAhBhChDhEhFhGqhHahIQhJAhK1hL!hMhNhOhPhQhRhShThUhVhWqhXahYQhZAh[1h\!%D%D% D%D%D%D%D%D%ݕD%ՕD%͕D%ŕD%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]D%UD%MD%ED%=D%5D%-D%%D%D%D% D%D%D%D%D%D%ݔD%ՔD%͔D%ŔD%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]D%UD%MD%ED%=D%5D%-D%%D%D%D% D%D%D%D%D%D%ݓD%ՓD%͓D%œD%D%D%D%D%D%D%D%D%}D%uD%mD%eD%]D%UD%MD%ED%=DH=HH9tHHt H=H5H)HH?HHHtHmHtfD=u+UH=RHt H=d}]wff.HG1Ð fDH%H=HDHcW4HHHH]G(HfH=G,HfUHH@HtH/t9H}HHtH/tHEH]H@fHGP0HGP0UGHuH@fEu H}THEH]H@GuHG@HW0H|ff.H]HGuHGHf.HH@GtHHf.HѐH@G tHHf.HH@GtHHf.HqH@GtHHf.HAH@GtHWHf.HH@Gu&HW0HG@H|uHHf.HяH@HH@HH@UHHHtH/t)H}HtH/t H]HGP0H]HGP0ATU1SHtFH=ItH81HHH1fATUSHG HSH umE1H=H-u&Hx2uD eH H}t$HuHWHHuHtAD[]A\HAH5H8D[]A\@HAH5H8D[]A\@SH HHH9Ftu:=wC(1[fHF=vH,H5H8][ø[ff.@SHP HHH9Ftu:=wC,1[fHF=vHH5UH8[ø[ff.@USHHH=5HH+HuD@H H8t6H;puXu;x2HU t91!ˉH[]fHIH5H8JH[]fD 1H[]HH5IH8ff.HdH%(H$1H=ZtOHG1LL$PIH= H5 DH2fHHI D#HHHEH I HH8uHH=1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$HpH$dH+%(uHĨff.BvHHUHSHHFH;tH uHPHH[]DH©tO1tKHfHWHF9ƒ8tHhfDH)HE9ATUSHG(HtxH=It_Ht#fHHsL x(H H;t3#CtHHsLyI,$uID$LE1P0L[]A\@E1[]LA\DHHH Hc8HW HHzH+xHWHHzH+xxE1Gt L[LG(LG ILD@HcPcSHH`Ht"Hc HHH9wHC1[3HuH?H5H8h[ø[f.UHHSHHHt:Hc HH9v1HH5iH8 H[]DHu H] 1H[]øf.SHHpHtHc H9wHC1[KHuHWH5H8[ø[fSHHHtHwCP1[DHuHH5H8([ø[f.SHHHtBHH t$HH5H8[w׉C81[@cHt¸[ATIUHHHFt=H5;HuID$@HH]A\fDH5HytHHL]A\ID$HHDAUATUHtrHFIHIt&H5Ht9H5H tLHL]A\A]]LLA\A]p]LLA\A]HلH5H8]A\A]ff.@S1HH=ZHt(oCSP@oK H oS0PPP0@0[ff.H5ATH9 10IMH=1ID$@Ht~H=1ID$HHHHt~oBAD$oJ AL$ oR0AT$0IT$@IL$(HJIT$,HPLAD$PID$XA\fDI,$ID$Hu ID$LP0E1LA\@fofo%fo-A\$Ad$ Al$0tfII,$uHHH9tP10Ht4HPHH@@0H@ H@(H@0H@8HP@Hf.[fAUyATL%<ULSHHW,dH%(H$1L$Lgx~HS(LyHHxwcHcS4H8{HHK HsDKPUH= HЋC8AULCP1KH H$dH+%(u.H[]A\A]fDHYH5H81qAUATUSHH,H{(HIHHcS4H|zHsAULKLC UH={H ЋC8HSPCPP1H IHEHPHUHt7ImtHL[]A\A]fIELP0HL[]A\A]HEHP0ImuDHmu HEHP0HE1[L]A\A]fDATUH-SH~HH9tHH9^tH9EtH94t HH@H1&HHoCCPEoK M oS0EPU0HE,H=H"HmIt Mt[I,$t$HH[]A\@HEHP0@ID$LP0HaH5H81fD[1]A\ÐSHwH1HtH(tHCH[HPHR0HCHff.HHw1HtH(tHHHfHPHR0@AWAAVAUATUHSHG AAA [LuHLmI}jHD$H)1DL|$D$L9|byfAA,_u|$u-E~zH}8A IHL9AuA,A>A<w0H}8t*IMBI]AuC|.vu1;AA<w0H.}8HI9AuA<v(fDHU0HMH@HDIf.j0HIAGL9f.AHD$H[]A\A]A^A_A,^tfDA/I@A<^fDKt=E DL|$두A<^fDHD$wmHD$_ff.AWAVAUATUSH8Ht$HT$H $?IHLL$MqMD$IGHD$IH I9fI*YOf/OHL,II9eHI9IMHIG8H9t:AG `H9~*H$H|$LL$(LT$ LT$ LL$($CTIw@IMAA@H#NJHMMN<HHJ|>I@HLH!HHHHHHH9uHMkM9=HI9IMII@8I9A@ MI9J>HMCDHH#NJH9HIpH H$H|$-H8L[]A\A]A^A_IGID$HD$I AAIW@HAGIG0 D$IG AGHHɚ;H'H?Bc Hw1HHH$Ht$IG(H|$DHv8uHHIv+DHHK=E,HAąH 1҅NAHHbH5dAH8&yHHaH5AH8IHaH5zAH8'sHuvHaH5XAH8DHQaH5rAH8|H)aH5"AH8TA(AT1H=ASHH%HoCIH=L@oK H oS0P0CPID$,AD$P HHt)H(t HL[A\H@P0HL[A\fDI,$u ID$LP0E1HL[A\HH=i1dH%(HD$1H7x3H$HtHT$dH+%(uHDf1AUATI1UHSH(L-_H=dH%(HD$1HT$Ll$-H\$H'H+1LD$HLH YH}HD$L9HxH5|H9t H=IH1H=IHl$HtjoEUP@oM H oU0PPP0@0ID$I\$HHD$dH+%(H(L[]A\A]fHCHP0I,$ID$ID$uID$LP0@E1KHHDH\$fDH!^H5bE1H8?V%DAT1USHHH= dH%(HD$1HHL$$Mt|I,$teAD$P1HHsƒOH,$HtdH=mH1+HIoHD$dH+%(uAHL[]A\ID$LP0;IHsDE19fAWAVAUATUH1SH8H|$L$H=LdH%(H$(1D$THD$hdH$HH+{1HL$hHT$`HH5(&H|$`HGHt$XHHLd$XD$ M~ 8HDŽ$CPHDŽ$H$ G$>-f$HH$H$H$EP>$EP?Ƅ$H|[H5H8D$ t#HE1HY[H5HH8zE1H$(dH+%(H8L[]A\A]A^A_HCHP0vfHHRDƄ$1Ҁ}eHHĀv<^OHBH$ $DbAT$Ձt IA uLhL$$D`A0cIAIDBA,uAHIH$H<H$H/H$IEH$EeIA. Df$H$)$)$DA %ADELLDLT$H$L\$EL\$LT$HHD$pHD$x LCA8nH HtHT$xH9x$u LT$H$)$LT$uLT$L LT$L$M LLT$L$ LT$HD$XHƅt+At#LuPHuHt$X1LLT$LT$IMtI,$uID$LT$LP0LT$MtI*u IBLP0MtImu IELP0T$ ML&H$H|$H|$HAH$H|$H|$HwAIHH@ H$fDHRH5H8貺DAe8fHعD$pHftK%A HT$TLLLT$DL$BdDL$LT$H$MH$AHx@Hc H90 LHLD$pHLDL$LT$@xLT$DL$MAuISIC(H|u I{s fD$pA%fH$fDe# H$AH<Hc H9%Ht$HN0HV@H|^Ht$HHH+$)HL$HF HF(H)Hڂ7HH9 LD$pHHLLDL$0LT$(LD$ HD$;wDL$0LT$(LD$ HD$HL$MH9$H+$)DL$ Hڂ7HLT$Lt$H9 HPHLLvL\$LT$DL$ @gH$AH Hc H9HL$AHQ(H=HjHQ HBHD$Ht$HN0HV@H|oH+$)HT$HD$0Hڂ7DL$(LD$pLT$ H9HT$HLLLD$uHD$0DL$(LT$ LD$MH9$H+$)HD$Hڂ7H9HT$HLLDL$(HLT$ Lt$uL\$LT$ DL$([MeIL$AUDP. LLI H$AE"L$EeslsIHH@ H$CfDA@H1xfD<<<<j<U@CH{HT$(HL$ LT$D$HT$(HL$ IH$LT$H)ѺHHL$(HD$ HHD$pHDHHLT$0HH|$LH|$LT$0HHL$(H|$zH$ILL$p|$@<G<HLLT$HH?HL$@HLL$(HHt$II)LILD$8L\$0H<HD$諷L\$0Ht$LL$(LD$8MHL$@LT$Ht?H11MtHL$@L HI9uHL$HLL9rLL$Mt1L11MtTHI9uHLL9uH$HD$ HD$pHL$xHD$pAAH$H#d HL$H9uHL$JՁ L\$1AKI?MKHDODAIIHDOuLL)ـ.:HS :HS(:LH+T$E1H)HD$LT$HL|$pLHDŽ$LSt$ HL$@L\$8Ht$0LL$PLD$HKH$AXAYHt$ HL\$(HL$0HHLD$8LL$@HLT$HRHt$HL\$@HL$8LL$0LD$(LT$ |LT$ LD$(HLL$0HL$8H$L\$@Ht$H LT$ LLSt$ J^_H|$;LT$ D$TD$TLT$E1LT$E1rL$Tf.D$Tf.@E1E1cDIgLT$H5HIE1E1H8迱LT$DH5$L$Tƒu LT$H$D$LT$?LT$L!D$TLT$E1E1 D$T$ƒ뗺ɰ$=Ht$L^AI)7H9.HL$HQ H)HT$H$LT$L$Th$LT$ƒL$THLT$;$LT$ƒILH+T$H)HD$@=uPՁt< uHIHLLT$8IHL$0LL$(Ht$H<HD$诲HL$0Ht$E1LL$(LT$8I$L$Tƒ+}HDŽ$L$TH|$LT$LHT$pLDL$LT$QYLT$DL$MLLD$pH1LDL$LT$mDL$LT$M^mLD$pLHD$0LDL$(LT$ LD$ULD$LT$ DL$(HD$0L¾LLD$ULD$LT$ DL$(HD$0DL$ LT$Lt$L¾LUL\$LT$DL$ 駲ATH ӵSHHHHNHhL%?FdH%(HD$X1LL$LD$D$ Ld$Ld$HD$L9HxH5H9tHD$o@H|$)D$ oH )L$0oP0)T$@L9tD$DH=UPIHtxID$HAD$0It$ID$HL$ HSID$ LD$ ID$(ID$0ID$8ID$@t$ H|$ptI,$E1HD$XdH+%(HhL[A\fDH=1HT$ 襭xH|$ Ht_H|$H/HGP0HD$H9DH5H8juDID$LE1P0`DHD$HHuAHCH5:E1H8%ff.fATH cSHHHHHhL%CdH%(HD$X1LL$LD$D$ Ld$Ld$親HD$L9HxH5H9tˮHD$o@H|$)D$ oH )L$0oP0)T$@L9taD$DH=IHtxID$H1ID$It$AD$0HL$ HSID$ LD$ ID$(ID$0ID$8ID$@t$ H|$#tI,$@E1HD$XdH+%(HhL[A\fDH=y1HT$ UxH|$ Ht_H|$H/HGP0HD$HAH5H8uDID$LE1P0`DHD$HHuAHAH5E1H8ǩ%譩ff.fAT1USHH H=dH%(HD$1HT$D$ fHl$HHmH=.)IHID$HAD$0HsID$I|$HL$ ID$ HUID$(ID$0ID$8ID$@Y.t$ HMu9HD$dH+%(u\H L[]A\DHEHP0TfI,$uID$LP0fDE1KHHXAT1USHH H=PdH%(HD$1HT$D$ Hl$HHmH=޲٪IHID$HAD$0HsID$I|$HL$ ID$ HUID$(ID$0ID$8ID$@-t$ Hu9HD$dH+%(u\H L[]A\DHEHP0TfI,$uID$LP0fDE1HHAT1USHH H=dH%(HD$1HT$D$ ƧHl$HHmH=艩IHID$HAD$0HsID$I|$HL$ ID$ HUID$(ID$0ID$8ID$@-t$ Hu9HD$dH+%(u\H L[]A\DHEHP0TfI,$uID$LP0fDE1HH踥ATH SHHHHH(L%=dH%(HD$1LD$D$Ld$pHD$L9HxH5oH9t 蕨H=IHID$HAD$0HsID$@HD$I|$HL$ID$ID$ HPID$(ID$0ID$8 t$H|$.HD$dH+%(H(L[A\HY<H5H8zf.E1H=i1HT$ExH|$Ht?H|$H/HGP0@I,$uID$LE1P0XfDHD$HHuߣff.@ATH #SHHHHH(L%;dH%(HD$1LD$D$Ld$萢HD$L9HxH5H9t 赦H=61IHID$HAD$0HsID$@HD$I|$HL$ID$ID$ HPID$(ID$0ID$8 t$H|$NHD$dH+%(H(L[A\Hy:H5H8蚢f.E1H=1HT$exH|$Ht?H|$H/HGP0@I,$uID$LE1P0XfDHD$HHuff.@ATH 3SHHHH:H(L%9dH%(HD$1LD$D$Ld$谠HD$L9HxH5H9t դH=VQIHID$HAD$0HsID$@HD$I|$HL$ID$ID$ HPID$(ID$0ID$8t$H|$nHD$dH+%(H(L[A\H8H5ڞH8躠f.E1H=1HT$腡xH|$Ht?H|$H/HGP0@I,$uID$LE1P0XfDHD$HHuff.@ATH CSHHHHZH(L%8dH%(HD$1LD$D$Ld$ОHD$L9HxH5ϭH9t H=vqIHID$HAD$0HsID$@HD$I|$HL$ID$ID$ HPID$(ID$0ID$8|&t$H|$HD$dH+%(H(L[A\H6H5H8ڞf.E1H=ɵ1HT$襟xH|$Ht?H|$H/HGP0@I,$uID$LE1P0XfD3HD$HHu?ff.@ATH SSHHHHzH(L%/6dH%(HD$1LD$D$Ld$HD$L9HxH5H9t H=葠IHID$HAD$0HsID$@HD$I|$HL$ID$ID$ HPID$(ID$0ID$8|&t$H|$HD$dH+%(H(L[A\H4H5H8f.E1H=1HT$ŝxH|$Ht?H|$H/HGP0@I,$uID$LE1P0XfDSHD$HHu_ff.@ATH cSHHHHH(L%O4dH%(HD$1LD$D$Ld$HD$L9HxH5H9t 5H=豞IHID$HAD$0HsID$@HD$I|$HL$ID$ID$ HPID$(ID$0ID$86t$H|$HD$dH+%(H(L[A\H2H5:H8f.E1H= 1HT$xH|$Ht?H|$H/HGP0@I,$uID$LE1P0XfDsHD$HHuff.@ATH sSHHHHH(L%o2dH%(HD$1LD$D$Ld$0HD$L9HxH5/H9t UH=֤ќIHID$HAD$0HsID$@HD$I|$HL$ID$ID$ HPID$(ID$0ID$8Lt$H|$HD$dH+%(H(L[A\H1H5ZH8:f.E1H=)1HT$xH|$Ht?H|$H/HGP0@I,$uID$LE1P0XfDHD$HHu蟘ff.@UH dSHHHHۙH(H-0dH%(HD$1LD$Hl$YHD$H9HxH5XH9t~tjHD$CuOHK0HS@H|t?HS(HS HH9P -H0HHT$dH+%(H([]H/HH/H5ʕH8誗f.1@H=1HT$uxH|$Ht'H|$H/>HGP0HD$2HD$HHu1E"fUH SHHHHkH(H- /dH%(HD$1LD$Hl$HD$H9HxH5H9ttjHD$CuOHK0HS@H|t?HS(HS HH9P ~-H.HHT$dH+%(H([]HQ.HH.H5ZH8:f.1@H=)1HT$xH|$Ht'H|$H/>HGP0HD$2HD$HHu1E貕fATH cSHHHHH(L%-dH%(HD$1LD$D$Ld$pHD$L9HxH5oH9t 蕘H=IHID$HAD$0HT$I|$ID$ID$ ID$(ID$0ID$8ID$@CuXH{ uQHL$HHsZt$H|$!HD$dH+%(H(L[A\f.HT$;H1,H5rH8RfE1H=I1HT$%xH|$Ht?H|$H/HGP0@I,$uID$LE1P0EfDHD$HHu迓ff.@ATH SSHHHHH(L%+dH%(HD$1LD$D$Ld$pHD$L9HxH5oH9t 蕖H=IHID$HAD$0HsID$@HD$I|$HL$ID$ID$ HPID$(ID$0ID$8pt$H|$.HD$dH+%(H(L[A\HY*H5H8zf.E1H=i1HT$ExH|$Ht?H|$H/HGP0@I,$uID$LE1P0XfDHD$HHuߑff.@UH dSHHHHH(H-)dH%(HD$1LD$Hl$虐Ht$H9tH~LL9tL返t;Ht$H{HlHAHT$dH+%(H([]fDH(H5:H8f.1@H= 1HT$xH|$Ht'H|$H/mHGP0Ht$aHD$HHu1V蒐fAUATUHPdH%(HD$H1HFD$ Hc Ll$ HHD$(KHD$HT$LHD$HXLIHD$ HHD$0HHD$8˫IHtut$ Au7Ht$ UuAHD$HdH+%(ulHPL]A\A]@HxL6t$ fI,$u ID$LP0E1fHI'H5E1H8gPAVI1AUATUHH(H=JdH%(HD$1HT$D$ Ld$MI,$tcH}L-ؙL9tnL;ubHEL-&IEHD$dH+%(H(L]A\A]A^ID$LL-qP0H}L9uHEI~L9tgL近u[IF L- &IEHmyHEHP0j@IHE1FILIHIEHIEIL$AE0IVHuIE I}LD$ IE(IE0IE8IE@舠Hmu HEHP0I.u IFLP0t$ LImPIELP0AfLLLIH*E1fDHLLzHHfHmu HEHP0I.IFLP0 AVI1AUATUHH(H=dH%(HD$1HT$D$ 耍Ld$MI,$tcH}L-HL9tnL諏ubHEL-#IEHD$dH+%(H(L]A\A]A^ID$LL-P0H}L9uHEI~L9tgL/u[IF L-{#IEHmyHEHP0j@kIHE1FILTIHIEHIEIL$AE0IVHuIE I}LD$ IE(IE0IE8IE@ȞHmu HEHP0I.u IFLP0t$ L[ImPIELP0AfLLLIH*E1fDHLLHHfHmu HEHP0I.IFLP0 1AWAVI1AUATUHSH8H='dH%(HD$(1HT$ D$Ld$ MI,$t`H}L-L9tkLu_HEL-d!IEHD$(dH+%(H8L[]A\A]A^A_ÐID$LL-QP0H}L9uHEI~L9tgL蟌u[IF"L- IEHm|HEHP0m@ۿIHE1IILċIHIEHIEI\$IE@M}LD$HAE0IVHuLIE IE(IE0IE8LD$-HT$HLJHmu HEHP0I.u IFLP0t$L谷Im5IELP0&fDLLLjIHE1fDHLLBHHvHmu HEHP0I.IFLP0葇AVI1AUATUHH(H=dH%(HD$1HT$D$ PLd$MI,$tcH}L-L9tnL{ubHEL-IEHD$dH+%(H(L]A\A]A^ID$LL-P0H}L9uHEI~L9tgLu[IF L-KIEHmyHEHP0j@;IHE1FIL$IHIEHIEINAE0HUIuIE LL$ MD$IE(IE0IE8IE@3Hmu HEHP0I.u IFLP0t$ L&ImKIELP0<@LLLIH*E1fDHLLHHfHmu HEHP0I.IFLP0 AVI1AUATUHH(H=dH%(HD$1HT$D$ Ld$MI,$tcH}L-L9tnLubHEL-7IEHD$dH+%(H(L]A\A]A^ID$LL-!P0H}L9uHEI~L9tgLou[IF L-IEHmyHEHP0j@諺IHE1FIL蔆IHIEHIEIL$AE0IVHuIE I}LD$ IE(IE0IE8IE@x Hmu HEHP0I.u IFLP0t$ L蛲ImPIELP0AfLLLRIH*E1fDHLL*HHfHmu HEHP0I.IFLP0 qAVI1AUATUHH(H=jdH%(HD$1HT$D$ 0Ld$MI,$tcH}L-L9tnL[ubHEL-IEHD$dH+%(H(L]A\A]A^ID$LL-P0H}L9uHEI~L9tgL߄u[IF L-+IEHmyHEHP0j@IHE1FILIHIEHIEIL$AE0IVHuIE I}LD$ IE(IE0IE8IE@Hmu HEHP0I.u IFLP0t$ L ImPIELP0AfLLLIH*E1fDHLLHHfHmu HEHP0I.IFLP0 AWAVAUI1ATUHH0H=ؖdH%(HD$(1HT$ D$螀Ld$ MI,$taH}L5fL9tlLɂu`HEHHHT$(dH+%(H0]A\A]A^A_ID$LL5P0H}L9uHEI}L9LKIEHHHmsHUHD$HR0HD$ZHLLHHuf.10fKIH1IEL3IHOIGHAG0LIGIG IG(IG0IG8IG@IHfIFHIFIMAF0HUIvIF ILL$IF(MD$IF0IF8IF@ڪHmu HEHP0Imu IELP0t$L1LH=~LI.uIVHD$LR0HD$I/IWHD$LR0HD$LLLrIH1(Hmu HEHP0ImLIELP01rI.u IFLP0I/IGLP01DDHmu HEHP0ImuIELP0_|ff.@AWIAVI1AUATUHH H=EdH%(HD$1HT$D$ }Ll$MImt^H}L%ӆL9thL6u\HE1L%I$HD$dH+%(H L]A\A]A^A_IELL%rP0H}L9uHEI~L9thL~u\IFL% I$HmHEHP0pDIHE1KIL;=IL9t~L>~urIGL%I$HmI.IFLP0fLLLIHzE1/fDILL}IHID$HAD$0IOID$IVHuID$ I|$LL$ ID$(MEID$0ID$8ID$@I/u IGLP0Hmu HEHP0I.u IFLP0t$ L7I,$ID$LP0@HLLHHiLX|IHID$HAD$0IMID$IVHuID$ I|$LD$ ID$(ID$0ID$8ID$@HEHP07fLLLBIHbE1MHmu HEHP0I.u IFLP0Mx@AVH cAUATUHHHHyH8L%{dH%(HD$(1LL$LD$D$ Ld$7w/Lt$M91I~H56H9t\{Lt$H}L%ԂL9tdL7{uSHEHPHH5vE1H81S{HD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LzuxIE?HPHH5=vH81zHmu4HEHE1P0ofLHLrLt$HH{E1EIELyIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8OHmt;ImtEt$ H|$ΥI,$KID$LP0;HEHP0ImuIELP0LLLjIHfH=1HT$ vH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@;HD$HHuYfH H5ZsE1H87uuff.fAVH {AUATUHHHHUvH8L% dH%(HD$(1LL$LD$D$ Ld$s/Lt$M91I~H5ƂH9twLt$H}L%dL9tdLwuSHEHPH' H5HsE1H81wHD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LLwuxIE?HPH H5rH81kwHmu4HEHE1P0ofLHLLt$HH{E1EIELSvIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8 LHmt;ImtEt$ H|$^I,$KID$LP0;HEHP0ImuIELP0LLLIHfH=1HT$ ]sH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@˨HD$HHuYfH H5oE1H8qqff.fAVH CxAUATUHHHHrH8L% dH%(HD$(1LL$LD$D$ Ld$Wp/Lt$M91I~H5VH9t|tLt$H}L%{L9tdLWtuSHEHPHH5oE1H81stHD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LsuxIE?HPH<H5]oH81sHmu4HEHE1P0ofLHLLt$HH{E1EIELrIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8誠Hmt;ImtEt$ H|$I,$KID$LP0;HEHP0ImuIELP0LLLIHfH=1HT$ oH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@[HD$HHuYfH9H5zlE1H8Wn=nff.fAVH tAUATUHHHHuoH8L%+dH%(HD$(1LL$LD$D$ Ld$l/Lt$M91I~H5{H9t qLt$H}L%xL9tdLpuSHEHPHGH5hlE1H81qHD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LlpuxIE?HPHH5kH81pHmu4HEHE1P0ofLHL"Lt$HH{E1EIELsoIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8Hmt;ImtEt$ H|$~I,$KID$LP0;HEHP0ImuIELP0LLLIHfH=1HT$ }lH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@HD$HHuYfHH5 iE1H8jjff.fAVH #qAUATUHHHHlH8L%dH%(HD$(1LL$LD$D$ Ld$wi/Lt$M91I~H5vxH9tmLt$H}L%uL9tdLwmuSHEHPHH5hE1H81mHD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LluxIE?HPH\H5}hH81mHmu4HEHE1P0ofLHLLt$HH{E1EIELlIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8芛Hmt;ImtEt$ H|$I,$KID$LP0;HEHP0ImuIELP0LLLIHfH=11HT$ iH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@{HD$HHuYfHYH5eE1H8wg]gff.fAVH mAUATUHHHHhH8L%KdH%(HD$(1LL$LD$D$ Ld$f/Lt$M91I~H5uH9t,jLt$H}L%qL9tdLjuSHEHPHgH5eE1H81#jHD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LiuxIE?HPHH5 eH81iHmu4HEHE1P0ofLHLBLt$HH{E1EIELhIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8 Hmt;ImtEt$ H|$螔I,$KID$LP0;HEHP0ImuIELP0LLL:IHfH={1HT$ eH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@ HD$HHuYfHH5*bE1H8dcff.fAVH jAUATUHHHH%eH8L%dH%(HD$(1LL$LD$D$ Ld$b/Lt$M91I~H5qH9tfLt$H}L%4nL9tdLfuSHEHPHH5bE1H81fHD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LfuxIE?HPH|H5aH81;fHmu4HEHE1P0ofLHLLt$HH{E1EIEL#eIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8Hmt;ImtEt$ H|$.I,$KID$LP0;HEHP0ImuIELP0LLLIHfH=Qx1HT$ -bH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@蛗HD$HHuYfHyH5^E1H8`}`ff.fAVH sfAUATUHHHHaH8L%kdH%(HD$(1LL$LD$D$ Ld$'_/Lt$M91I~H5&nH9tLcLt$H}L%jL9tdL'cuSHEHPHH5^E1H81CcHD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LbuxIE?HPH H5-^H81bHmu4HEHE1P0ofLHLbLt$HH{E1EIELaIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8:Hmt;ImtEt$ H|$辍I,$KID$LP0;HEHP0ImuIELP0LLLZIHfH=t1HT$ ^H|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@+HD$HHuYfH H5J[E1H8'] ]ff.fAWH bAVAUATUHHHHB^H8L%dH%(HD$01HD$D$ Ld$P1LL$ LD$([ZYLt$M9I~H5jH9t_Lt$H}L%HgL9L_u{HEuFHPH H5,[E1H81_HD$(dH+%(QH0L]A\A]A^A_fLHLRLt$HHuDE1Lt$HELl$I}L9t]L_uLIEHPHhH5ZH81'_HmuHEHE1P0GfDLt$IEL|$IL9tpL^udIGHPHH5ZH81^Hmu HEHP0ImIELE1P0fIL]IHID$HAD$0IOID$@HD$IUHuID$I|$LL$ID$ L@ID$(ID$0ID$8GHmt@ImtaI/tKt$H|$赉I,$RID$LP0BfHEHP0ImuDIGLP0@IELP0I/ufDLLL2Lt$IHc5@H=p1HT$ ZH|$ HH|$H/HGP0Lt$LLLIHr2fHmu HEHP0Imu IELP0I/4IGLP0DˏHD$HH`DHH5VE1H8XXff.fAWAVAUIATIUHSHxH~dH%(HD$h1D$,|H5H9t [LZf._zf(fT _fV `f. _Ef.DfT_f._v_H mIHtI|$D2HD$hdH+%(HxL[]A\A]A^A_@SYHL|nIH1H]nI,$IM^M~I~ 1.nIHHWI,$HD$ZH|$eLLHpI.Iu IFLP0MH=5HxHHH=H`IHt11HHc Lt$0HD$HKHD$0HD$8HXLIHD$@HHD$PHHD$XdLD$,LHLLD$HD$LLHL$Hp&LD$LLHHt$,L聅LD$I|$LHLD$HH|$藊HT$H|$LUEuH}(`Eu H`AuI(p`Au L_`t$,LumAD$ AD$H+D$ID$ EuH}(`Eu H`AuI(_Au L_I,$u ID$LP0E1&HHIID$LP0iID$LP0H|$dVHI.uIFLE1P0HYH5UE1H8wTfI.fIFLP0EuH}(_EuH^DI,$u ID$LP0SE17fHiIHI|$1;SAUI1ATUHH H=jdH%(HD$1HT$TLd$MI,$tmLL%S^LLIL9t/Hts1HH1\UImuIUHD$LR0HD$HT$dH+%(u=H ]A\A]ID$LP0ˉIHk1Rff.@AVH sZAUATIHHUHZSH`HdH%(HD$X1LL$LD$HD$H\$uQHl$H9H}H5t`H9tU:Hl$Ll$MI}H]H9tHgUusI}H'H5xH9t &UH1)LHLIQfDD$ I9LfIHIuHxHT$ it$ H̀HD$XdH+%(H`L[]A\A]A^ÐLD$ @fIH1I|$HL$ Hc HD$ HT$ HD$(HXLIHD$0HHD$@HHD$8KHD$Hd!t$ HKI,$UDE13M9eIEMfH=ag1HT$ =QxH|$ HH|$H/HGP0Hl$L&iIHjLHH܀LI1O@LHL*ImfHH:LNIHLtImIu IELP0MLHLILINfID$LE1P0DHD$HH}DHH5ME1H8Nf.IEJfDH5ME1Ng@IEH5MHPHrH818R~Nff.AVIAUATUSHH=GYHdH%(HD$1D$&QH@0IH@HLl$H@Il$HsLH@HH@H@H@ID$@t$LP}uDIvHLMt$L1}u%HD$dH+%(u5HL[]A\A]A^DI,$t E1@ID$LE1P0cMAVAUATUHHH5NH(dH%(HD$1HT$HD$O Ll$MsI}L%WL9t{LSPuoI}H3H5dH9t PtwH!|HL!I/fAE tHcU8HEH)I9E(`HLIHD$dH+%(=H(L]A\A]A^IEH54KHPHH81OE1H{{uLNIHt@0H@HI|$1H@H@H@H@H@ID$@B@H=VD$ tNIHh@0H@HHL$ 1H@HUI|$H@H@H@H@ID$@t$ HzI,$ID$LE1P0@L11dIHHHLI*JkDLHL$ HULD$ tfIHjHiH:u[t[LIIHTLoImIu IELP0M/LHtLIIIEH5NIE1JJ@AUIATUHLMIHt@ uI|$HLHdKL]A\A]IT$0I|$H@HEfDAT1USHHH=`dH%(HD$1HHmJL$$MttI,$t]AD$P1HsHƒHHx]H<$$H<$ISHD$dH+%(uAHL[]A\ID$LP0IH{DHE1HATUHG tM}taH=#JKHHt:HLHmIu HEHP0HL]A\fDHHuE1HL]A\DH=I4KHHH5zGE1H8Hff.fATH MSHHHHJIH(L%dH%(HD$1LD$Ld$FHD$L9HxH5UH9tJHD$Ld$@P1HsLƒHHx=H|$KH|$IRHD$dH+%(H(L[A\fDFE1fDLd$H=^1LGxH|$Ht4H|$H/uHGP0HD$MHD$;fD}HD$HHu@HqH5DE1H8F=uFDAWAVAUATUSHdH%(H$1GD$LgH=7HIHoUo] HLoe0L|$HL$ M)T$ )d$@)\$0\$D#t$HHuH$D$P0D$HD$XHD$`HD$hHD$p@HD$xAEoLO_IUIE(H|HO IEIEH90fH*^Lf/L Lf/H,L@HLHHHLD$OLD$HI2AEfIUIE(H|RAAHDIHHxJLFL?ODATHCuHHI\$AE7uI}(OAEu8LN-D$CAEt<u LNE1H$dH+%(HĘL[]A\A]A^A_I}(NAE볨 tHrH5!EE1H8CHH5CE1H8}C6CE1|A_IULD$H~H|$PLLLD$H\$hHl$x1I#NJLyL9r9LHL$HHNHLMH9HL$IMHHCM HHL1Ҿ@@HHIHHHHHAH9uAH+fDHHtH|tLNfDH|uID$PƒuH|$xMD$Pu H|$PLILjuIMIU(H|HI\$DA11uHH|$PLL LD$H}fDLoLL$D$PE1I‰L$E1D ttH%H5=E1H8K>fIMI.E11IFLP0H HmME1DHH5=E1H8=f>IHHL{TImIu IELP0LL[TI.Hu IFLP0I,$u ID$LP0Mt9Ht4HL1RAI,f.I.yE1LM=E1AVAUIATI1USHPH=SdH%(HD$H1Lt$D$HD$L=SHl$HHmb1HT$H5=L ?H|$HHD$@D$HD$8HGHD$@HD$HD$ HD$(HD$0IHID$HAD$0ID$@HID$ID$ ID$(ID$0ID$8H9HIuHMLH\$I|$LD$ t$HjtI,$uID$LP0E1HD$HdH+%(HPL[]A\A]A^ÐHEHP0HH5;E1H8;DqHHRDH=fHEHPHE1H56H81F;L[]A\fDHEEuMHU0HE@H|t=HE(HE HH9C +L%I$Hmu HEHP0L[]A\fDL%1I$fHLHE1HHuDATL%AUHSHH~L9tJL::u>HEHPHE1H55H81V:L[]A\fDHEEuMHU0HE@H|t=HE(HE HH9C ~+L%I$Hmu HEHP0L[]A\fDL%AI$fHLHE1菥HHuDAUIATL%@UH~HL9tALI9u5HEuxHPHH54E1H81i9L]A\A]HEEt-L%I$HmuHEHP0L]A\A]L%I$f.HLLE1迤HHuDAUIATL%@UH~HL9tALy8u5HEuxHPHH53E1H818L]A\A]HEEu-L%I$HmuHEHP0L]A\A]L%I$f.HLLE1HHuDAUIATL%N?UH~HL9tAL7u5HEuxHPH H5.3E1H817L]A\A]HEE u-L%I$HmuHEHP0L]A\A]L% I$f.HLLE1HHuDAUIATL%~>UH~HL9tAL6u5HEuxHPH=H5^2E1H816L]A\A]HEEu-L%6I$HmuHEHP0L]A\A]L%9I$f.HLLE1OHHuDAUIATL%=UH~HL9tAL 6u5HEuxHPHmH51E1H81)6L]A\A]HEEu-L%fI$HmuHEHP0L]A\A]L%iI$f.HLLE1HHuDAUIATL%<UH~HL9tAL95u5HEuxHPHH50E1H81Y5L]A\A]HEEu-L%I$HmuHEHP0L]A\A]L%I$f.HLLE1诠HHuDAUIATL%<UH~HL9tILi4u=HEHPHH5/E1H814L]A\A]@HEEt-L%I$HmuHEHP0L]A\A]HU0HE@H|uL%I$fHLLE1ϟHHuDAUIATL%.;UH~HL9tAL3u5HEu8HPHH5/H813]1A\A]@HHE]A\A]fLHL]A\A]=ff.fAVH @AUATUHHHH1H(L%dH%(HD$1LL$ILd$.Lt$M9I~H5=H9t2Lt$H}L%:L9tnL2u]HEHPHH5.E1H812HD$dH+%(GH(L]A\A]A^f.Lt$HEL,$I}L9tYL2uMIEHPHaH5-H81 2HmuHEHP0E1cIEL31IH7ID$HAD$0IuID$H}ID$ ID$(ID$0ID$8ID$@=1I|$1ɉHmtImIELP0@HEHP0ImfLLLIH+H=D1HT$].H|$Ht{H|$H/HGP0Lt$LHL芜Lt$HHS@HmtIm&fHEHP0@cHD$HHt]DHH5*E1H8,,ff.fAVH =AUATUHHHH-H(L%{dH%(HD$1LL$ILd$A+Lt$M9I~H5@:H9tf/~Lt$H}L%6L9tnLA/u]HEHPHH5*E1H81]/HD$dH+%(7H(L]A\A]A^f.Lt$HEL,$I}L9tYL.uMIEHPH!H5B*H81.HmuHEHP0E1cIEL-IH'ID$HAD$0IUID$HuI|$ID$ ID$(ID$0ID$8ID$@Hmt!ImIELP0HEHP0ImfLLL™IH;H=QA1HT$-+ H|$Ht{H|$H/HGP0Lt$LHLZLt$HHc@HmtIm#fHEHP0@{`HD$HHtmDHYH5'E1H8w)])ff.fAVH 3:AUATUHHHH*H8L%KdH%(HD$(1LL$LD$D$ Ld$(/Lt$M9AI~H57H9t,,Lt$H}L%3L9tdL,uSHEHPHgH5'E1H81#,HD$(dH+%(}H8L]A\A]A^Lt$HELl$I}L9L+uxIEWHPHH5 'H81+Hmu4HEHE1P0ofLHLBLt$HH{E1EIEL*IH?ID$HAD$0HT$ ID$HuI|$ID$ ID$(ID$0ID$8ID$@EuRtAD$AD AD$HmtBImtLt$ H|$VI,$:ID$LP0*f.HEHP0ImuIELP0LLL"IHH==1HT$ 'H|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@\HD$HHuIfHٽH5$E1H8%o%ff.fAUIATL%0UHHH~dH%(HD$1D$L9teL(uYIEHPHMH5n$H81 )E1HD$dH+%(HL]A\A]IEL(IHID$HAD$0HT$ID$IuI|$ID$ ID$(ID$0ID$8ID$@tAd$Imt6t$H*TII,$;ID$LE1P0+@IELP0t$HS LHL“IHImIELP0!$AVH 4AUATUHHHHe%H(L%dH%(HD$1ILD$L$$"L,$M9I}H51H9t'L,$H}L5.L9thL&uXHEHPHDH5e"E1H81'HD$dH+%(H(L]A\A]A^DL,$HELd$I|$L9tXLh&uLID$HPHǺH5!H81&Hmu HEHP0E1mDI$It$H}uAL-IEHmu HEHP0I,$)ID$LP0fL-IEfLLL貑IHu_DH=A91HT$#PH|$HtKH<$H/]HGP0L,$QDLHLJL,$HHDXH$HHuf.HyH5E1H8!2}!ff.fAVH 2AUATUHHHH"H8L%kdH%(HD$(1LL$LD$D$ Ld$' /Lt$M91I~H5&/H9tL$Lt$H}L%+L9tdL'$uSHEHPHH5E1H81C$HD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9L#uxIE?HPH H5-H81#Hmu4HEHE1P0ofLHLbLt$HH{E1EIEL"IH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8Hmt;ImtEt$ H|$NI,$KID$LP0;HEHP0ImuIELP0LLLZIHfH=51HT$ H|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@+UHD$HHuYfH H5JE1H8' ff.fAVH .AUATUHHHHEH8L%dH%(HD$(1LL$LD$D$ Ld$/Lt$M91I~H5+H9t Lt$H}L%T(L9tdL uSHEHPHH58E1H81 HD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9L< uxIE?HPHH5H81[ Hmu4HEHE1P0ofLHLLt$HH{E1EIELCIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8Hmt;ImtEt$ H|$NKI,$KID$LP0;HEHP0ImuIELP0LLLIHfH=q21HT$ MH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@QHD$HHuYfHH5E1H8ff.fAVH *AUATUHHHHH8L%dH%(HD$(1LL$LD$D$ Ld$G/Lt$M91I~H5F(H9tlLt$H}L%$L9tdLGuSHEHPHH5E1H81cHD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LuxIE?HPH,H5MH81Hmu4HEHE1P0ofLHL肈Lt$HH{E1EIELIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8JHmt;ImtEt$ H|$GI,$KID$LP0;HEHP0ImuIELP0LLLzIHfH=/1HT$ H|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@KNHD$HHuYfH)H5jE1H8G-ff.fAVH c'AUATUHHHHeH8L%dH%(HD$(1LL$LD$D$ Ld$/Lt$M91I~H5$H9tLt$H}L%t!L9tdLuSHEHPH7H5XE1H81HD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9L\uxIE?HPHH5H81{Hmu4HEHE1P0ofLHLLt$HH{E1EIELcIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8jHmt;ImtEt$ H|$nDI,$KID$LP0;HEHP0ImuIELP0LLL IHfH=+1HT$ mH|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@JHD$HHuYfHH5E1H8ff.fAVH #AUATUHHHHH8L%dH%(HD$(1LL$LD$D$ Ld$g/Lt$M91I~H5f!H9tLt$H}L%L9tdLguSHEHPHǪH5E1H81HD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9LuxIE?HPHLH5mH81 Hmu4HEHE1P0ofLHL袁Lt$HH{E1EIELIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8Hmt;ImtEt$ H|$@I,$KID$LP0;HEHP0ImuIELP0LLL蚀IHfH=!(1HT$ H|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@kGHD$HHuYfHIH5E1H8gMff.fAVH C AUATUHHHHH8L%;dH%(HD$(1LL$LD$D$ Ld$/Lt$M91I~H5H9tLt$H}L%L9tdLuSHEHPHWH5xE1H81HD$(dH+%(mH8L]A\A]A^Lt$HELl$I}L9L|uxIE?HPHܦH5 H81Hmu4HEHE1P0ofLHL2~Lt$HH{E1EIELIH/ID$HAD$0IUID$@HD$HuI|$ID$LD$ ID$ HHID$(ID$0ID$8Hmt;ImtEt$ H|$=I,$KID$LP0;HEHP0ImuIELP0LLL*}IHfH=$1HT$ H|$ Ht[H|$H/HGP0Lt$Hmt!ImIELP0HEHP0@CHD$HHuYfH٤H5 E1H8  ff.fAVH AUATUHHHSHHhHʤdH%(HD$`1HD$D$ H\$ H\$P1LL$(LD$y ZY_Ld$I9YI|$H5uH9t#Ld$AoD$H|$)D$ AoL$ )L$0AoT$0)T$@H9t+>BD$DLd$H}L5L9tFL)u5HEHPHH5 E1H81ELd$HELl$I}L9LIEHPH(H5I H81Hmu0HEHE1P0$LHLzLd$HH{E1HD$XdH+%(H`L[]A\A]A^fIEL IHWID$HAD$0HL$ ID$IUHuID$ I|$LD$ID$(ID$0ID$8ID$@Hmt?ImtIt$H|$9=I,$/ID$LP0HEHP0ImuIELP0H= !1HT$ H|$ HH|$H/HGP0Ld$HqH5E1H8 f.LLLxIH*Hmu HEHP0ImDIELP08D @HD$HHPDHH5*E1H8 ff.fAWAVAUIATUH1SHH=dH%(HD$x1L|$@D$8L WLd$@MOI,$H}LYL9L H}L5H5ٟH9 L H}H5H9t _ t CwH5xHHH!DHEH|MMUH9HT$xdH+%(/HĈ[]A\A]A^A_fDID$LP0H}LRL9HLLvHH{1f >IH1tCvL{6LuAL$,HLL9HH5HD$<=HnLLHHD$L vLL$HI)u IALP0H3I}@LYHLHD$C L\$HII@0H@HMQLH@LLD$AAE@Ic8D uCvt$8L3toHHCEAEEAEEAEAAEoAA\@HHHf. zf. h zH-HEH5h HHLLHHD$L}rLL$II)u IALP0MAE LL$D$D$L$HS17IHeAL$,L{ LHLݩI.H1IFLP0"\Hmu HEHP0I.IFLP01HH5 LL$H8 LL$I)uIALP0HmuHEL\$HP0L\$AuL\$I{( L\$ApL bATI1UHH=dH%(HD$1Hqx]H,$HtDHmt-HD$dH+%(uWHHL]A\ƺfDHEHP0@7HHuHD$dH+%(u H1]A\ATI1UHH=dH%(HD$1Hx]H,$HtDHmt-HD$dH+%(uWHHL]A\fDHEHP0@K7HHuHD$dH+%(u H1]A\AATI1UHH=AdH%(HD$1Hx]H,$HtDHmt-HD$dH+%(uWHHL]A\ffDHEHP0@6HHuHD$dH+%(u H1]A\UH¶Ht]HHHmt3f.zuD$D$Hu)Hf]HED$HP0D$H1]AWAVAUATUSHLgdH%(H$1It.H$dH+%(HL[]A\A]A^A_fHD$ HH$H$HD$HHH$H$HD$xH$H$GHD$(HD$0HD$8HD$@D$PHD$XHD$`HD$hHD$pHDŽ$ Ƅ$HDŽ$HDŽ$HDŽ$HDŽ$D$t!E1 ^LcDHc H=HDŽ$KH$H$HXLIH$HH$HH$ИIHH=u踘HHHs L|$L$HrHLLHD$ H$HD$HLMMH~HsLH迦OeMLLHEHHHd H$H$HXLIH$1LLHݾHT$MLHHgLH輥HHCHEHHHD‹T$HÓH5H8@AEuI}(AEu LH EuH}(EHkfDHHLLHD$ Ht$PHD$#nfDDdMcMi/xfDI0HH5H8 OATUSH@HtCHsHH1H=sHmIt L[]A\ÐHEHP0L[]A\fDE1[]LA\ff.fHGL@ GuHG8MLff.AUIATL%.UHHH~dH%(HD$1D$L9teLmuYIEHPH͑H5H81E1HD$dH+%(HL]A\A]IELIHID$HAD$0HL$ID$HUIuID$ I|$ID$(ID$0ID$8ID$@#ImtH81E1HD$dH+%(HL]A\A]IELIHID$HAD$0HL$ID$HUIuID$ I|$ID$(ID$0ID$8ID$@EImtI.tHt$L$I,$ID$LE1P0fDHEHP0I.uIFLP0t$LeLLLPIHHLLPHHSHmtI.IFLP0HEHP0ff.@AVAUIHH5pATUH(dH%(HD$1HL$HT$D$ tNHl$L%]H}L9tdLuXHEHPHxH5=H81E1HD$dH+%(H(L]A\A]A^DHELt$I~L9tULEuIIF HPHwH5H81dHmuHEHE1P0sIL|IHID$HAD$0IMID$IVHuID$ I|$LD$ID$(ID$0ID$8ID$@uHmtAI.tKt$LI,$ID$LE1P0fHEHP0I.uIFLP0t$L:LLLNIHHLLMHH{FHmtI.4IFLP0(HEHP0?ff.@AVAUIHH5ATUH(dH%(HD$1HL$HT$D$}tNHl$L%H}L9tdL,uXHEHPHuH5H81KE1HD$dH+%(H(L]A\A]A^DHELt$I~L9tULuIIF HPHuH56H81HmuHEHE1P0sILIHID$HAD$0IMID$IVHuID$ I|$LD$ID$(ID$0ID$8ID$@yHmtAI.tKt$L I,$ID$LE1P0fHEHP0I.uIFLP0t$L LLLKIHHLLbKHH{FHmtI.4IFLP0(HEHP0ff.@AVAUIHH5PATUH(dH%(HD$1HL$HT$D$tNHl$L%=H}L9tdLuXHEHPHrH5H81E1HD$dH+%(H(L]A\A]A^DHELt$I~L9tUL%uIIF HPHrH5H81DHmuHEHE1P0sIL\IHID$HAD$0IMID$IVHuID$ I|$LD$ID$(ID$0ID$8ID$@蘳HmtAI.tKt$Lo I,$ID$LE1P0fHEHP0I.uIFLP0t$L LLLHIHHLLHHH{FHmtI.4IFLP0(HEHP0ff.@AVAUIHH5ATUH(dH%(HD$1HL$HT$D$]tNHl$L%H}L9tdL uXHEHPHlpH5H81+E1HD$dH+%(H(L]A\A]A^DHELt$I~L9tULuIIF HPHoH5H81HmuHEHE1P0sILIHID$HAD$0IMID$IVHuID$ I|$LD$ID$(ID$0ID$8ID$@舰HmtAI.tKt$LI,$ID$LE1P0fHEHP0I.uIFLP0t$LLLLbFIHHLLBFHH{FHmtI.4IFLP0(HEHP0ff.@AVAUIHH50ATUH(dH%(HD$1HL$HT$D$tNHl$L%H}L9tdL|uXHEHPHmH5H81E1HD$dH+%(H(L]A\A]A^DHELt$I~L9tULuIIF HPHemH5H81$HmuHEHE1P0sILIHHLL>HH{FHmtI.4IFLP0(HEHP0ff.@AVAUIHH5ATUH(dH%(HD$1HL$HT$D$tNHl$L%mH}L9tdLuXHEHPH,fH5MH81E1HD$dH+%(H(L]A\A]A^DHELt$I~L9tULUuIIF HPHeH5H81tHmuHEHE1P0sILIHID$HAD$0IMID$IVHuID$ I|$LD$ID$(ID$0ID$8ID$@8HmtAI.tKt$LI,$ID$LE1P0fHEHP0I.uIFLP0t$LJLLL"@H9I#NJL9H0IWH)H9HHIIGwIHHIHB0GHd HH)H9HHLGIS;\HHIHB0H]xEcHH)I9HIxHWx/e9HH3B0AHo#HH)H9HLGIu@HHIHB0HƤ~HH)I9tHIxH͕PMB HH*B0AH@zZHH)H9,HLGHЄK8HH)B0HrN HH)I9HIxH3"[3/#HH%B0AHHH)H9HLGH$ HH$B0HvHHH)I9VHIxHHH!B0AH THH)H9~HLGISZ/DH HIH B0Hiʚ;H)I97HIxHaw̫HHB0HiAH)H9HLGHBzՔHHB0HiҀH)I9FHIxH4ׂCHHB0Hi@BAH)H9HLGICxqZ| HHIHB0HiҠH)I9>HIxHKY8m4HH B0Hi'AH)H9HLGIS㥛 HHIHB0HiH)I9HIxI(\(HHIHB0AHHHH)H9tmHLGHHHB0HHH)I9t!0A@I@A0ÐA.IA.0II@A0A@.HA.I=.H@A.I.Ho@.H@A.I.Hv@.H@IQIIhIIyIuII:A.I.HW@A.I.H@A.IA.I.H@.H]@.HIff.USHHHo( u HH9W !HCHCHEH[]fHHHuHH\HtHИHC(HHS Hk(fAWIIH_Cy 5AVAUATIUSHH(dH%(HD$1LHHIHJHIBI)tIfJJ9IsLI<Hs1AHTHHt$M)HsM{LN4H$HuzL\$IiIt{M)LL$O<DL\$L\$HrXHLML5L$M9\tr0HT$dH+%(uDH([]A\A]A^A_@K;t"vиΐMO94sfDM{Uڥf.HGHNHWH9tOILVH(I)LN(M~ HHHLL3H@H)LILHHx'HO(HV( DHrH4H94tf1ff.fAVAUIHH5ATUH(dH%(HD$1HL$HT$腧tNHl$L%կH}L9tdL4uXHEHPH<H5H81SE1HD$dH+%(H(L]A\A]A^DHELt$I~L9tUL轧uIIFHPH<H5>H81ܧHmuHEHE1P0sILIHID$HAD$0IVID$HuI|$ID$ ID$(ID$0ID$8ID$@{Hmt"I.IFLP0fHEHP0I.f.LLLIH:HLLHH~HmtI.lrf.HEHP0ff.@AVAUIHH5ATUH(dH%(HD$1HL$HT$5tNHl$L5H}L9tdLuXHE/HPHD:H5eH81E1HD$dH+%(H(L]A\A]A^DHELd$I|$L9tTLluHID$HPH9H5H81芥HmuHEHE1P0qI$It$H}du9L-9IEHmu HEHP0I,$1ID$LP0!L-9IEfLLLIHukDHLLHHff.HHHu1ATHIëIHtL1HILA\D1ff.fATIUHS0ufD]H0tƤHHfDXHDZuI$8HD[]A\@AWAVAUATUSHH8HH!8H HHĶH7HXHUH48H5HC`HPHHH@(HHH^7HP`HHR@H+HHHH5HaHH7L-JH-LL%YH2HkHĬH=ȟpH踟`L訟PH=蔟<L5ǣLݡIH!H=ªHH5ܨ蛝[H=LH5}=I/u IGLP0H=yIHH5HޝHHHD$1LHH5p腝LD$HHH(u H@P0LD$H5JLLD$~LD$HHI/uIGLP0LD$I(u I@LP0H=踟HHHL1H HH5֜HOHLnIHH+LH5mH%I/u IGLP0H=!IHCH5H膜IH.H=5I1LHH5HHHH+u HCHP0I/u IGLP0I.u IFLP0H=WIHLH5HHV葟HH5LHtoHH5LHMhH41H=H0ݜHHH=HH5L" EHHH>A=Hq3HH5G1苟IMH1L>HHImu IELP0HHLHSxrHHAIcAH HHDA=L0H26I/u IGLP0E1H=6HtMH&H/u=@zH ơH1H5ѡtIHݡH51RIH۠HH c1'IM^H{1LݗHCHCImu IELP0HSH3LHH L3Mt+{H5UuH.H1襚Iy1H蓘HHHHH56L荙1H=,gHXHL-h.H5LIELIdIELH5L*E1HHHH(H@ LH5ˠH@?BH H@ H@(KH"HHB0HZ8BP豘1HHpHHH@ H5gLH@?BH@ H@(H!HHZ8HJHB0BP:y4TH{xIH?H3HLHH;uHuHcSL跓HH3Hu1L-%H-MtL覗HDHHHLL薗HH@uHwH5uLNHjH5iL0fE1H5ī1IxMLE1E1]fATIUSMH#NJIE11Hv8uH IHLH9IH9AHD ɄDIDHHI9uI9v}tyH#NJfHHH9At7HLBEM9vfDJJIM9u[L]A\HHI9vEuIDE1Iff.HSIE11H#NJIv8ufDH IHLH9IH9ALD DIDHHH9uńtH#NJHHHH9tH[fHHff.@HtSIE11H#NJ@MLL)H+E1H<I9HCAIIyI@HHHuLHD$(HYAAH|$(-FH#A\H ڗHH;ގH;1HȎH3 [fDAWIIIH_Cy 5AVAUATIUHSHHdH%(HD$81HHD$HD$HHHL4IHCI)I)Hw\1Mt(I<@J4JtIM9rt H|$HHT$8dH+%(HH[]A\A]A^A_DHIGwIHLHHHHHd HHHD$H)HSHL$t2HHMTiI<HyHL$HTL|$LL)H|$ L,HLTHT$IILH|$>H|$u HIL[L|$ M9HH|$(L)Lt$0HD$fKLLHD$0HL$ILL|$(JDIL|$ M9wII)MtN|HD$HH `fDI<uHs1HD$VE1t@HHHH H1H)HH"ssHHHHH"HHHHH)HH"HHHHH)HH"HIHHH9sHtH)ILfDHHHHH(HHHHH)HH(HHHHH)HH(HIHuH9sHH H)HH HHHH H)HH 1HIHu H9RH)ILfAWHAVAUATIUSHXT$4HHHɐHt$(IHcHILt$ PHHHIEHڿH5J HI HL$HIHD$II9hLd$8HMIMML!1HI(HL$LLD$L@HH)HLHDHH)H9HF1H@II)HLLDLH)L9LF1HHL@II)HLLDLH)L9LF\1HLL@II)HLLDLH)L9LF+1HHI@LH)HLLELH)L9LF1LD$HL$L@HH)HHEHH)H9HFIHII@LQM]L9l$Ld$8T$4H|$(OHL$ Ld$HD$HD$HAIHHD$8ID$HD$@HD$LT$AIHu DALHL,ILLHIIuHLLH|$ HtwHD$HL$@NHD$8LL,I:LHIIzLHILHHILHHIMzMbIM9uLt$ H|$tHD$Ld$HD$(II9sELt$HHl$ Dl$4 @MI9s(DHLPuHX[]A\A]A^A_HX[]A\A]A^A_@AWHIAVAUIATAHHUSHHHHHHHD$ Lt$ Ht$H9r5DMI9s(DHL"SuHH[]A\A]A^A_IcH|$HHDLHl$HD$0HD$L|$(Dd$IHD$8LHl$0K4?JHHt$L4HT$@IHD$ J\5LILt$L4$LT1L|$I@H4LDE1I IL6mu2HEHPHH5hE1H81RmKHECP1HuHƒHmItCMxnH<$LbH<$I5tHD$dH+%(uOHL[]A\fHEHP0@HLHE1HHh묐hE1hATL%sUHSHHH~dH%(HD$1L9t>Llu2HEHPHvH5gE1H812lKHECP1HuHƒHmItCMxnH<$LBH<$IsHD$dH+%(uOHL[]A\fHEHP0@HLHE1_HHh묐gE1gSHHG( fHx8uH{gHHwH{ g[H[fAW1AVMAUATIUHSHH(HLl$hHT$LL$I} H$gHT$`H3LCLL$IH)HMHSHst!HHxLAHsLCM=LLD$fLHS1LD$IIH@H)HsLHsLHSMt0H@Mt'I4fDAHsLHsHSH{ME(E1ML؄<u L9E1IHH)LHsHSE6Ht9HHx0HD0HDL$H)LD$H6fH{LD$DL$MukA}zuHsH$MMH L9;Mt'HCHHCHPHSHtA$TH{HtHH([]A\A]A^A_@HSLHsMtUI~ Dȃ<IL)MHM] IGLH HsHSHtAHsLHsHSH{AtAHtILLHHHHL$J41H DHsH{fILM)_fLHsLHS"DMI)LHSLI)LA fDATSHHUH9HMǿ0HHHHuyHnIHthHHHHuCnID$(HtI9|$nA4$@uCIT$ID$(H|u1HD$dH+%((IL$HL[1]A\A]HD$dH+%(H[]A\A]ÐHIL$(H6P^Cy HHH?H)H,HHDHBH)HHBHHH,DHHIHH<)tH5UMID$ I9IMIA4$L9t@ L9Ml$H)H=ɚ;w`H='Hc1H HH,HZ1L)L GbII4HI,DH?zZH9HvHH9bHrN H9HH9H if1A1LHT$LIL$(A4$H=?B H=w1H=HHHCHID$Hc H9wqHo#H9HƤ~H9HDLHT$LIL$(A4$Xf1H=Hl@H#NJH9HL1H=H8H TH9H H]xEcH9HIHYAUATAUSHH u HJH9W 5D HC HC HCH[]A\A]HHHHuLo(LcHtHC(HXJ HC Lk( AUATAUHSHH u HJH9W 4HCHC HCD eH[]A\A]DHHHHuLo(L8cHtHC(HI HC Lk( AUIATL%cUHHH~dH%(HD$1D$L9teLM[uYIE HPHH5VH81l[E1HD$dH+%(/HL]A\A]IELsZIHID$HAD$0I|$ID$ID$ ID$(ID$0ID$8ID$@AEu^I} uWHL$HUIueImu IELP0t$Hx7I,$)ID$LE1P0fHT$LHLIHfImIELP0qVUHSHH,Iu,MHy1IL9uuIHL[]@II؃LDH[]LfH9UHSHHH~H5$GHC  H9HMH9t tTH9gE ȈHEHu(HCHEH{H{(HCHEHWH[]HhtH} HfDfAUIATL%`UHHH~dH%(HD$1D$L9teLMXuYIEHPHH5SH81lXE1HD$dH+%(HL]A\A]IELsWIHID$HAD$0HT$ID$IuI|$ID$ ID$(ID$0ID$8ID$@7tAt$Imt6t$H芃II,$;ID$LE1P0+@IELP0t$HJ LHL"IHImIELP0SAVAUIHH50TATUSH dH%(HD$1HL$HT$D$UtNHl$L%^H}L9tcL{VuWHEHPHH5QH81VE1HD$dH+%(H L[]A\A]A^HELt$I~L9tULVuIIF8HPHeH5QH81$VHmuHEHE1P0tILV(uIHCL9~,LhHUHE(L++H| A $ M9,H[]A\A]A^A_DHHII)M9~LLHH)tA$M)HML}ƒA$HU(H|tL9k~  A$@7XA $@H[]A\A]A^A_ÐN(HGt HH+HGHҙA $H[]A\A]A^A_fDLHH1HCHH+HEM9Lm말t̺_LHL){$LmIHcC$HJHcH>f.1dHHHM(H1HHHHHH)Ƹ!HA$fD @PA$HEH|#HwTA$€A$EHM(HtEu'A$HM(HuA $HtEuHM(H}1HtAI#NJH4HVL9@HH#NJHEH9AH511HPH9HMHU H9tE H9HHuHFHEHTHɚ;H'Hcz1H fHHHVHHE1H1HfHHH9@DH?zZH9HvHH9HrN H9ZHH9 ?HpH?B H1HHc H9wmHo#H9HƤ~H9ЃLH-HM(HEVLH]1HH#NJH9lH TH9 Q1H=HM(dH]xEcH9ЃfAVAUATIUHSt uk[]A\A]A^f.H(EuHEI$H9~H)HHILmA|$$IwWAD$$HFHcH>V(H6[]A\A]A^DHd HLHDHHE€MI @=MHHM(H1HHHHHH)Ƹ!Hr4Iw#uHM(u1IyHM(H}HFI#NJ1f.H4HVL9@ HH#NJHEHH9HTHɚ;H'LHc1H HHHHPHHEI9$H&I$HLHEHHE;fD1IfMt$E~f.M @MtEFfHHH9@DH?zZH9w{HvHH9HrN H9HH9H H?B H1HHHc H9w@Ho#H9w~HƤ~H9Hd1HHOH#NJH9H3H TH9H 1HHH]xEcH9HfDAWAVIAUIATUSHHHT$HL$dH%(HD$81HGHGD&A+t|1A-0Ant AN8AEHL)HL$I;D$}(H$LLH޿trHHI蜸Hl$PLLLHtJHHL|$ rHT$LLLHt!L$ MILHL} LLh$uH$ $uH$D$PuH|$xD$Pu H|$PD$ uH|$HD$ EH|$ 5LIHHL$DLLL袾AVAUIHH50ATUH(dH%(HD$1HL$HT$D$tNHl$L%H}L9tdL|uXHEHPHܫH5H81E1HD$dH+%(H(L]A\A]A^DHELt$I~L9tULuIIF HPHeH5H81$HmuHEHE1P0sIL<IHID$HAD$0IMID$IVHuID$ I|$LD$ID$(ID$0ID$8ID$@HHmtAI.tKt$LOBI,$ID$LE1P0fHEHP0I.uIFLP0t$LALLLҁIHHLL貁HH{FHmtI.4IFLP0(HEHP0ff.@AVIAUIATMUHSHHdH%(HD$1D$uDu?H{utSLL賸HD$dH+%(H[]A\A]A^fMLHHLtfDHt$HIUIUHH9rD$uEufHLڍ\LHcHH]HNgmH9HOLLLHob1%}H9HLI^]5LHLºAVAUIHH5PATUH(dH%(HD$1HL$HT$D$tNHl$L%=H}L9tdLuXHEHPHH5H81E1HD$dH+%(H(L]A\A]A^DHELt$I~L9tUL%uIIF HPHH5H81DHmuHEHE1P0sIL\IHID$HAD$0IMID$IVHuID$ I|$LD$ID$(ID$0ID$8ID$@HmtAI.tKt$Lo>I,$ID$LE1P0fHEHP0I.uIFLP0t$L>LLL}IHHLL}HH{FHmtI.4IFLP0(HEHP0ff.@AWIAVIAUMATIUHHdH%(HD$1D$uKuFH}uEtYLLѴHD$dH+%(H]A\A]A^A_MLHLL褼tfDHHt$HD$uIH9|HH9A$ubHx%LLLHLLc@LLLILLϯHLH+@LLLڶ AVAUIHH5p ATUH(dH%(HD$1HL$HT$D$ tNHl$L%]H}L9tdLuXHEHPHH5= H81E1HD$dH+%(H(L]A\A]A^DHELt$I~L9tULEuIIF HPHH5 H81dHmuHEHE1P0sIL|IHID$HAD$0IMID$IVHuID$ I|$LD$ID$(ID$0ID$8ID$@HmtAI.tKt$L:I,$ID$LE1P0fHEHP0I.uIFLP0t$L::LLLzIHHLLyHH{FHmtI.4IFLP0(HEHP0? ff.@AWAVAUATIUSH8uH Ѓt"H8LL¾[]A\A]A^A_@H~HuHEHD$HuHFIH9EHHsH9HLID$ H9tA$ 8H9HE(L5IHD$HC(HD$HEHHLl$(H\$ H\$HD$L,H5E1L HD$H<fDH9tLHI9tWLIHHHHLHIHH)IHHLlLHLlHD$H1IHHIHHHt$HMMHLLHH|$LHkHXLH[L]A\A]A^A_ulDHL1HHHHL$ HL$ MIHt$LHH'LT$(DHXHM[]A\A]A^A_mff.@AWHAVAUATUSHHHt$LD$ H_HIIHHHcH=-HH9AIL9tLHILL9LGALIHL&IHLIHSLHD$H7LIH@LHD$H$HLLHH|$HLH|$HLL;l$LIHQLjIH7Ht$L,HLF1LLL|Ht$LLLH)HK,,1HHH|$LLh|Ht$LLH1HcH|$LL.|L[HD$ HHD$8HHD$E1LE1HD$ MIIIIII#NJ@HD$Ht$LL$0KJJ JL9J4HL$(HGL9HFHH)HLH9LHCHrHL$(HHH@PTHHH1L9HHH(H)HH)HIH)H9LJ7HBhrLL$0IIIHHHHHHHHHHHHH\$ HH1HD$@H9HH#NJHLE1H9v1L9AIH)IHD$HIKIHD$ L9d$8|MH|$fIL9v)IL9vE1HHL[]A\A]A^A_DMAIK6L9LELgLE1[H|$PH|$E1LL{tH|$L{tH|$L{"DL8f.LE1H|$@H|$LLx3Ht$LLSfDAWAVIAUIATMUSLHXH<$dH%(HD$HHI9w]ILD$@LHLLHH^H<$LHHH6@I@HIHD$IJL)HD$HHD$M9=I9HL1HHHHL$ HL$ MIHt$LHHIH|$HH<$dH\$1HHHHHLMMLLHtgH<$K'HOdRKL 1HHHHL$ 5HL$ IMHT$LHHGT1HT$HdH+%(HX[]A\A]A^A_HLLeHT$HM)Ht$HHJDcHD$MGLLD$0H|HLLIHHD$HD=MH|$(LLLT$8L\$ 8cHD$(LD$0HL$HT$ LT$HLMLLT$ HHL1HHHHL$(HL$(MIHT$8Ht$HHIHD$H\$ HLHHbLHHH\$ fDH='H=?B  H=w1H=H@KDIDEHHED$`uH$8D$`u H|$`$H$dH+%( Hĸ[]A\A]A^A_H|$MD$LI@E1Af.HT$HLT$(ތLT$(RML$LHyfHFI|H9)Ѕx(LHLZx]LA\LLA]A^A_ÐLLL2xID$1H9EڍL DAWIAVMAUIATIUHt t tPMLLHL|t]A\A]A^A_fDLH~uUA$9t>)Ѕx(LHLzw]LA\LLA]A^A_LLLRwID$1H9EڍL DAWIAVMAUIATIUHt t]t tlMLHLL|t]A\A]A^A_f.HL}uA$E9tF)ЅxLHLvLLLv]LA\LLA]A^A_HE1I9D$ڍL Dff.AWIAVMAUIATIUHt t]t tlMLHLL{t]A\A]A^A_f.HL%}uA$E9tF)ЅxLHLuLLLu]LA\LLA]A^A_HE1I9D$ڍL Dff.AWAVMAUATIUHSHHxdH%(H$h1utBMLHH!zH$hdH+%(Hx[]A\A]A^A_LzLNM9HT$LMHt$IK<9H|$XHI6H@LHD$LP(HD$Lh(I L\$`Ht1HLHILLMLLw9HL$XHH5pHE H9HMH9tE NH9G Lm(1L\$`H IIDHD$XHH9wHM uA$2H\$ UHsH\$HsHuH HHtI|tH5ϺHEH9HMH9t H9ITHɚ;{H'Hc1H Hf.3@ug@HSHC(H|H$hdH+%( HxLH[]A\A]A^A_oHt$HT$A$H$hdH+%(b 1HxH[]A\A]A^A_nfH$hdH+%( A24$ISHD$LX(HD$LP(HtHH9LL\$(LLT$ LL$ H MGHIIHLD$8HHL$0HH H9ǺHBHH|$XHH_IHHHLL$LT$ I9L\$(HL$0H9, LD$8I@HL@I9o HHHxH|$H9v HPHHH9 HHT$ L\$HLD$@HL$8LT$0LL$(܋HHD$ HHHLL$(LT$0HHL$8LD$@L\$Hy HƺHD$HHHW LHHcH: HHȺHHH@H HHP1MLLL}Du@uH}(uHD$XLm(@uHE H @H?zZH9HvHH9HrN H9wnHH9H UDLHubLm(HEH?B8 Hw1HHDHHHPHHEHc H9Ho#H9<HƤ~H9H롐LHaLm(HESIL$IT$(H|D1HHKH#NJH9H,@LD$XLLLLIH&fDLH0k"1HHH TH9H f.HHHuUIHtHD$H|$HHLGLO(Hp(HgLL2yfI LLL1HL$XH3fHD$H|$Lm(H@(HW(H#NJHH"IHHII?H?I!HIHJ*m9EA2$H\$HM HD$UH@HCHE1HLLL, HHHH谁HHHHHHHUL\$(LT$ LL$BLL$LT$ HL\$(H MLLLHD$HL$uLHL$:H|$/*H!<HHHL\$(LT$ LL$LL$LT$ HL\$(LMHLLHD$譻H|$LHHHLHHHM@HD$HHH }fHD$HHH=]HHHHAHHHH%pAVMAUATMUHSH dH%(HD$1D$H9tZH\$ILID$uILLHHD$A $HD$dH+%(H []A\A]A^ÐHT$H4$BkH4$HT$HItQH\$LHID$tQAEuI}(AEu LD$sfLH bYILLHHAWIAVAUATUHHSH8HU(H $HMdH%(H$(1H$ Ƅ$0H$H$ HDŽ$HDŽ$HDŽ$HDŽ$@D$P0HD$XHD$`HD$hHD$p@HD$xH$HDŽ$D$ HD$(HD$0HD$8HD$@H|HD$HH}LEEN4I~M1L`H$@H$(dH+%(H8[]A\A]A^A_L.H$L$HM H$PH$LHHDŽ$ HƄ$H$H$H$LHDŽ$HDŽ$HDŽ$L$H$H$$i1M HHXLIIIIc HDŽ$KH$HHD$JD(H9H$HHLH$H$LL$H$IbH$IGHH+D$IGH9Hɚ;\H?zZH9HvHH9HrN H9wHH9H IGffAH)H*HYH*\^f: H,L9LMH9Hl$P1ɺH1L$BWIEH|$ Ld$H|$L$I~fH'Hc1H @HHMIؿH HJHL$HLHT$0LMILH HHHIHL$HL!HT$8HLHɚ;eH?zZH9:HvHH9/HrN H9OHH9@@H 1fHF1LHHH+1 VH$ApFf.1ɺ1U)D1ɺ1LUH$@H'HcI1H H$L\fH?BS HY1H@HCHc H9wYHo#H9&HƤ~H9@@H1H@Hf.H#NJ1H9@H@H|$HdLd$DŽ$HIHH$HLu^IHHLL,IrLt$IH0AuxIOIW(H|u$-ItSLLLMHLHLqvLtLLLMHLHLJvL$Lt$H$ A$uH$[$u LFD$PuH|$x2D$Pu H H$$%  @~fH TH9@@H f1H@Hf.H]xEcH9@@Hf1ɺ1LRf.H?BH1HH@L9w;HƤ~H9H1HHH#NJH9HdH TH9H H1HH3LLt$-$A蹱fAWAVIAUATIUSHH Ht$HT$ dH%(H$8 1mHD$HPH@(H|HD$ o` ooP@,)d$`)D$@D$d)T$P)$$H$0Ƅ$0H$(H$0H$H$0H$H$0HDŽ$HDŽ$HDŽ$HDŽ$ @Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@D$p0HD$xHDŽ$HDŽ$HDŽ$@H$H9|$HD$ H$D$hHl$@L$L$HHHD$HD$HH9H "fHc1H H@Hc H9Ho#H93HƤ~H9HfDH\$Ht$0HHHOHT$8ILHL9ILLLLŮ@LHH$ADHtL$Lt$@H%H{-H|$HHD$KHT$MLHt$L$u$HD$Hy HHD$HHL$PHQIL$I+ $HyH4H9$H\$0HHD$HHHH)HHIHT$0zAHIHHL$HH|$H|$HL$HHA7IG(HIW f.1H=H @H#NJH9H@HHL!1H=HH TH9H H]xEcH9HL9DI(A7™fAWIAVIAUATIUSHH8 dH%(H$( 1HNHV(H|]uyH5R+LIIwIwHHHHIHHHHIH=ɚ;wwH=' Hcq1H # H$( dH+%(* H8 LL[]A\A]A^A_?H?zZH9MHvHH9HrN H9HH9H vfDH$( dH+%(1H8 L[]A\A]A^A_>fH$( dH+%(JDHʃ AAAH$( dH+%(S(H3H8 L[]A\A]A^A_qfH$( dH+%(H8 L11[1]A\A]A^A_j7f.Hc H9}Ho#H9JHƤ~H9H1H=?B|H=w1H=HH9S6ooKoS C,)D$0)T$P)L$@D$TfH$ Ƅ$0H$H$ H$H$ H$H$ HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@D$`0HD$hHD$pHD$xHDŽ$@H$M9HHL$LL|$ H$H\$Hl$0L$HHD$XHD$H$HD$(IH|$@H='HcJ1H HDHD$IHLH$LLHHD$0ϧH|$IHLL艨AOIVIF(H|SHt$LLFSHD$HD$Ht$ LHLHD$0IFIFH+D$0$H$H$H@HHDŽ$HH=ɚ;H?zZH9HvHH9cHrN H9HH9H H#NJH9H@1H=H@1H=H@H TH9H t@Hc H9Ho#H9HƤ~H9HfDH=?B H=1H=H1H=H@H#NJ1H9HDH TH9H t@1H=H\@H]xEcH9H<@Hl$0LLLHINIFHT$@HHH9~1AuIvIF(H|tHH+T$0H9} A $@DLHLbTH$( dH+%( H8 []A\A]A^A_fA $@H$( dH+%(H?AH\$IVINHt$0C(HщD$XHD$@HH9~HH)H9~ A $@fLHLS$uH$$u H|$(ћ$uH$$u H|$$uH$$u LqD$`uH$ZD$`H|$`BDH\$C(D$XH\$IVINHt$0C(HщD$XHD$@HH9DHl$`LLH:t-I`fH]xEcH9HLL6誏f.AWAVAUAATIUHHSHLHxdH%(H$h1HD$`L|$0$0HD$(LIHc HD$8HXLIHD$@HHD$PHHD$XHLHD$HD$HHD$HD$ @HD$HKHD$0THt$0HLAu+AoT$ Ao$AoL$)T$PD$T)D$0)L$@IMLHH1ݧ$uH|$(J$u L9H$hdH+%(uHx[]A\A]A^A_/ff.@AWIAVAUATIUHSHH8 ooJdH%(H$( 1oR )D$0)T$P)L$@D$THv(HEHLHHɚ;H'ZHcH HHH fHH9vHEHEHHHIHHHIH=ɚ;H='Hcl1H fD LL3H$( dH+%(O H8 []A\A]A^A_DH?zZH9HvHH9z HrN HrN H9 HHH9HvHHG12QH?B3 HHHHvH€@H<HyHEHEHH1L1+Ht$0LL6NHc H9uHo#H9HƤ~HƤ~H9H@zZHGH?zZH9HvHH9HrN H9HH9H fDQ1@ H4ALAS(H3dDHc H9Ho#H9HƤ~H9H1H=?BH=w1H=HH9SC,H$ Ƅ$0H$H$ H$H$ H$H$ HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@D$`0HD$hHD$pHD$xHDŽ$@H$L96HHL$LHl$ H$H\$LLl$0HHD$XL$HD$H$HD$(IH|$fDH='Hc1H HDHD$ILHH$LLHHD$0?H|$ILLHEHUHE(H|Ht$LL+:HD$HD$HT$ MLH1HD$0>HEHEH+D$0$H$H$H@HHDŽ$HH=ɚ;H?zZH9THvHH9HrN H9HH9H DH)^fDH#NJH#NJH9Hd HGfDHHH|HkH#NJH9H|@1H=Hd@H]xEcH]xEcH9Ho#HGfDH TH9H @1H=H@Hc H9Ho#H9HƤ~H9HnfDH=?B H=K1H=H71H=H@H#NJ1H9HDH TH9H @1H=H@H]xEcH9H@HL$0HML`IOIGHT$@HHH9AuIwIG(H|HH+T$0H9A $@f.A $@H?L*fH\$HUIHMHt$0C(HщD$XHD$@HH9~HH)H9~A $@LLLF$uH$$u H|$(َ$uH$$u H|$$uH$$u LyD$`uH$bD$`H|$`JDH\$IC(D$X@H\$HUIHMHt$0C(HщD$XHD$@HH9fH TH TH9Ѻʚ;HGHHHpH kLl$`LHL,t$LH]xEcH9H]LH)sAWIAVAUATIULSHHHL$LL$dH%(H$81H$0D$`0H$H$0HD$XI@HD$hH$I@HD$pH$A@,HD$x$HBHBIHDŽ$@HPD$00HD$8HD$@HD$HHD$P@H$HDŽ$H$DŽ$A$Ll$`HLHL$H,LH$臚H$LVHD$$H\$Lt$0LLH*H$(HH5LH$H\$,Hc H$H$HXLIH$HH$HD$,HDŽ$(Ƅ$HDŽ$HDŽ$HDŽ$HDŽ$HDŽ$KH$*D$0$HT$HHD$XH|A D$AD$`uH$D$`u LD$0uH|$XsD$0u H|$0_HT$HLAH$8dH+%(HH[]A\A]A^A_fDH|$DŽ$ HT$LL))HD$HuHHHH L$L$5AIOIW(H|u$HLLLMLWLLLAH\$tLLLML.LLL@{Ll$`HT$LV(#1L$Zf.t$1ɺLA0t$LHNgmLL$htRILLLLpHLL2@HD$T$, AIwIO(H|u ILLLLHLL?ILLH$H$蒬D$0T$` ƒ t$,HT$L&$A%D$H\$ $A|AWAVIHLAUATMUHSHHxdH%(H$h1IHD$`$0LHD$(HD$HD$HD$HD$ @m&IVL|$0LHHc D$XHD$8HXLIHD$@HHD$PHHD$HKH9HLLHHD$0C,H\$LHىD$\ILLHH芰HLHL>LLHH$uH|$(x$t@D$L%A $ @A$H$hdH+%(u9Hx[]A\A]A^A_DL'DLHP"){fAVAUIATMUHHdH%(HD$1Lt$D$M裯LLHe=D$A $Au&HD$dH+%(u(H]A\A]A^f.LH!zfAUIATIUHuWHVHF(H|t'LH\$tuLLH]A\A]HEHɃ@{HM(H1HHHHHHHHH)Ƹ!Hr#HE@1HuHM(tH}IHtBI#NJ1HHL9@HH#NJHEHH9kHFXHwH9HLHE H9tE H9IHMHAHEIDH=ɚ;H='HcH ҃HHcHAHHEI9EL}1HHM(1HHt"EHtEHuHE@HHH9@DH?zZH9wpHvHH9HrN H9HH9҃ HHH=?BH=H=҃Hc H9wYHo#H9HƤ~H9҃LH#sLM(H}7LHSH#NJH9҃UH=҃EH TH9҃ ,H=҃ H]xEcH9҃fAUIATIUHSHt! HH[]A\A]FfDH8LLH&EHu(HMH|1HHH9HHtHH HH HHHHH9w$HHHHHHHH9vAE(I]tHI+]H+]HH9HOHH]H[]A\A]fHʃ = EHEAU(IuH[]A\A]F=fDHH1[]1A\A]D1^fAWIAVMAUIATIUHSHHdH%(H$81HD$0$0HD$HD$HD$HD$ @HD$(utuMLLHLyu1EA$fLHL2 LLL$H$8dH+%(HH[]A\A]A^A_HRID$(H|u?HVHF(H|uL¾LLfDHMHIHLHn$uH|$(Kl$u H:lLLL#3BafAWIAVIAUATIUHSLH dH%(H$ 1H$D$p0H$(H$H$H$H$H$Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$ @Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$HDŽ$HDŽ$@HD$xHDŽ$HDŽ$HDŽ$@H$E<$H$D.HD$hDD$@HDŽ$ HD$HD HD$PHD$XHD$` u=LʾLH$ dH+%(Hĸ []A\A]A^A_@AuJAXA LLHLLT$3 LT$AL׃AS(H3C9널A H|$HLL$LT$LL$?LLT$LL$%LLT$LL$ IVIF(H|IFIFH;1ADl$t#LLL$1LL$LT$D$IT$ID$(H||HUHE(H|LH5LT$e1H|$ޅ1nu#AALHDfA H{AHUHE(H|Hc L$1LL$LH$0LH$8HXLIH$@HH$PHH$XH$0HLL$LT$HDŽ$HKHD$(pLT$LL$$LH\$(MHL$LT$8HLLL$$DŽ$L:LD$HLH$L$$Ht$0HDŽ$u:LD$HLH$LLHDŽ$Hl$ fLL$LLT$8H5LLLL$LT$}LT$HLLD$LL"LD$HLHT$LLD$HLLL$LT$ $ $HLL$LT$8LMLt$pHD$L$`Hc LH5NLH$` H$hHXLIH$pHH$HHDŽ$xKH$D$LIHfDMHHHHIMHLHHl$t0AtMHHLL|MHLLLH$D$pIfo$LT$xfo$H$$fo$ H$H$ H$HD$L$HL$H$H$H$()D$p)$)$H9L$ rMLT$8Iߨ 1L2$uH$(d$uH$nd$uH$Td$uH$:d$uH$ d$u L dD$puH$cD$pH|$pcz11҉LgLL$XLLLL$H\$@H5LT$Lt$Hl$Ld$($H$H$H|u9$M $Av T$A~H|$0uCILLLLILLLL2Ht$0ILHHLPILLLLILLLLMDAWIAVIAUATUSHHNH~HT$(H_Cy 5LdH%(H$1H$H$D$7HF Hv(Ƅ$0H$H$H$H$H$8H$xH$HDŽ$HDŽ$HDŽ$HDŽ$@Ƅ$0HDŽ$HDŽ$ HDŽ$(HDŽ$0@HDŽ$xH$hHHƄ$@H$HHHDŽ$HHDŽ$PHDŽ$XHƄ$PHHL$8HDŽ$`HBJTHH)t-H~'H=\HH)H$HJD1H4HHɚ;w4H'HcH H]xEcHH?zZH9wIHvHH9HrN H9HH9$Hi@B@Hc H9mHo#H9HƤ~H9Hi'>fDH?BHHHvHHH5)FH9HLIG H9tA H9YH]xEcIO(1H#NJHHHH9HHHAHHHHA?IGA?HyHIGHH=ɚ;H='QHc1H Hf.HXLIH HHIGHc HD$PHdHD$XH$H$HD$(Ht$`HHL$pHD$hKH$HHT$xH$HDŽ$KH$H$HT1H$fHPHcكHIHH?HHHH!EH$xL$HD$H$L$HD$HD$PH$H$H$@HD$HD$LHD$ fHt$H)LH $HD$PMLH $HHH$HHH4$LH HT$MLLLCLD$ LHLLD$LfD$LA AHH9\$LMLLLHH$HDHD$PH92H $Ht$MLNfDH#NJH9øHGDH"HƤ~HH TH9`Hiʚ;H4H@zZHfLLH\H9\$ A?@$uH$[$uH$[$uH$8[$uH$[Ht$(LL;H$dH+%(HĘ[]A\A]A^A_f1IGHH=ɚ;9H?zZH9HvHH94HrN H9(HH9H @HD$8I)GD$7 Af.LL'H=?B H=1H=HHc H9wIHo#H9HƤ~H9HZf.LLH#NJH9H$@1H=H H TH9H 1H=HH]xEcH9HHd HH]xEcH9HHHHo#HH THHi۠HHlHiۀ`HrN HMHiAHi5HH)Mff.AWAVAUATUSL$HH $L9uHH|$HHT$Ht$hdH%(H$1ɸHDHHHD$ HHBHD$(HHHocIHXHD$H$HD$HHH<HD$`HH|$pH\$8HH\$x=H$H|$pH$H|$`H9D$hH$HWc?HHD$HH$H\$HHIH#HD$PH\$0uH\$8HtHD$`L$HHH\$HH$HD$XHD$xHD$@fDHL$@HMHD$0HD$0H;D$8Ht$XHCHH)ιHD$HMH$HL$Hd$ Ht$(HD$IHHL H;$ufDLIHHD$HLM4L3MHLHeMLLH|$H?H bHI HD$ IHt$(HD$IHHL H;$uMH|$LHLMHD$PHL$HHl$@Ht$8H H9t$0-DHLILVH$dH+%(uHĘ[]A\A]A^A_1JAWAVAUATUSL$HH $L9uHH|$xHt$8dH%(H$1HmIIIwH\$8NHD$hHD$0M`EMpH,MIHEIH$H$H$HIH\$XHD$PH$HD$LHD$HH$HD$(LHD$`HD$xHD$pA@AHD$xH\$hHHD$@HD$pHD$ HD$0HD$fDH\$HD$@HT$H1IKL HHLIJL DLHL9u1LT$XH|$HHL9t>fDK LfL!H2HLbH1LH9uHMLL9uH|$H9|$0H\$ LT$(E1HJL ILHHKL DMHM9uE1LT$`H$IM9t?fHD$I4H@HH9HHAH>LI9uIHD$LMM9uLT$1@I HzLHHH KL MJL HHH)H)DHL9uHT$(E1@H HxHIHHJL LJLHHH)H)DHM9uL\$H|$PHD$H|$ H9D$8H$L\$0H|$pHD$0H$H|$hH9D$8H$dH+%(unHĨ[]A\A]A^A_HT$E1fH HxHIHHJL LJLHHH)H)DHM9u;L\$8 GAWIAVMAUIATIUHSHdH%(H$1H$D$@0HD$hH$HD$HHD$PHD$XHD$`@D$0HD$HD$ HD$(HD$0@HD$8 HRID$(H|vI9EH\$MMLHLH!iD$ u:A u4IWIG(H|t$ID$IWIWH)ID$HH9D$@uH|$hPD$@u H|$@PD$uH|$8PD$u HPLLL$H$dH+%(Hĸ[]A\A]A^A_MLLHLuEu*A$ILHLALLL덐LL0wH\$@LLHIDHVHF(H|uL¾*fDHD$(HT$8HLHɚ;YH'HcSH HHHcfDD$H9kHD$ HH$A $UHDŽ$KD$ Hc HD$pHD$xHXLIH$HH$HH$у8tLLD$pLHL$N$LHxT$ D$LtH$I9EHLtoLLhH?zZH9HvHH9%HrN H9HH9HGH#NJH@H9 HyD$dLLH?Bɚ;H$HHH怵HHc H9wSIo#L9HƤ~H9IGD$HHHH'H#NJHH9HGH TH9HGrHHH`DH?BUH]xEcH9HG?LAAVAUATMUHSIHHV(HNH|tuHFHL)Hd HNHH9wLt6LmEu*HUHE(H|tHEHEHH9C~A $ []A\A]A^@[L]A\1A]A^[L]A\A]A^[L]A\A]A^LLH)IHt{$LmwpC$HXHcH>M}HHM(H1HHHHHH)Ƹ!HrOEA$@A$Iw.A$ЀA$EMu1ItHM(H}1Ht@I#NJfDHHL9@ HH#NJHEH9rH50HPH9HMHU H9tE H9HHUHBHEHDH=ɚ;H='Hc1H Hf.HHBHHEMtE MA $E1IMtEHHH9@DH?zZH9HvHH9 HrN H9*HH9H HPH=?B H=1H=HHc H9w\Ho#H9HƤ~H9HLHHM(HE$LHH#NJH9HM1H=H9H TH9H 1H=H HM(1H]xEcH9Hff.uuHFH9G u1t tff.fSHAS1H -IHGH;1@H;1H8U@H3 t$ LH,DE4$Il$HID$M!HHH!H!f.E1H)IAHIIIH"HILHL)HI"LHIIH)IH"E1HAHIIH9vMtfHH)HI9tdIDHH`II H)IH HIMI L)II LAHEIIH9vMuE1HL[]A\A]A^A_IIIH(HILHL)HI(LHIIH)IH(E1HAHM H9fAWAVAUATIUSHHcHHxHT$LHInI~HHHD$ZLHLIIHHLI8HL$MnHINL9t$uHD$HD$H9D$  HT;HT$ H9T$0t(H|$XЋT$HD$XHL$`HHL$hH9L$(s-Ld$XLl$0Lt$hHl$(HLLH说L9rH|$X:Hx[]A\A]A^A_ff.AWAVAUATUHSHHHxIIT$lD)H|$ DHHH։HDd$4Ht$(H|$PD$h\HD$XHHD$ DHH4IHt$`H9s+Ll$XLt$PL|$`fDLLLIdzM9rHcD$lH8HH‰HD$8D$h'HD$HD$PHHHD$@HD$ HHD$HfLl$8Ld$AtHHLHLLH IIuHHHAL$4IHD$HHL$ L4HL$HHD$@HHD$I>LHI讥I~HHHD$蚥LHLI艥HHLIxHL$MnHINL;t$uHD$HD$H9D$( HT$PHt$(H|$ Hx8H\$(H9\$Pt&H|$XЋT$lHdHD$XHL$hHD$ HHL$`HH9s-Ld$XLl$(Lt$`HLLHϱL9rH|$X7HT$(Ht$PH|$ Hx[]A\A]A^A_ÉD$H|$X7D$Hx[]A\A]A^A_Hx1[]A\A]A^A_ÐAWHGA׺[AVIAUL-4ATAxU1S1HfH|$H$fD!tGt u<ML1IcL-FHL*xID9}DHcA)IHHuL94$IFLE]fAIF+D$H[]A\A]A^A_DH[]A\A]A^A_ff.AUIH=6ATUHHdH%(HD$1D$y.H@0IH@HLH@I|$HUH@HL$H@H@H@ID$@t$HZu"HD$dH+%(u)HL]A\A]DI,$u ID$LP0E1*@ATHUHHH=5HdH%(HD$1D$HtUHuHxIHT$t$HZuHD$dH+%(u%HL]A\I,$u ID$LP0E1D*@AWAVAUATUSHHhdH%(HD$X1HoLo(H4MD5Mu(HD$XdH+%(HhL[]A\A]A^A_fLwLgO<&I~MH_Cy 5LHHHHHALH)HɸHDH*L >0LH)I$IID5I1ItIL I6fDHl$tILL$@D$0LT$M9LL$8HD$0LLLLH6P^Cy LL$HLL|$ H?H)HHHBLH)LHH賝LLL$LH_Cy 5Hl$(H4HHHHBH)ID1HD$MLH|$HWHKLH /H$IH1@HLLL$ҽELL$HD$ HD$(HD$@Li'ff.UHHpdH%(HD$h1HFHHD$HFHD$HFHD$HF HD$ HF(HrHD$(Ht$8HrHt$@Hr@D$0Ht$HHr HR(Ht$PHt$0HT$Xʃ@$rHT$hdH+%(u1҅HHp1ɉ]&fAUIATIUHSLHutILHLu/LH1LH1[]A\A]@ H[]A\A]AUIATIUHutLHLvu*LH1]LA\A]1ɉ,@]A\A]f@t@8tu!@[KL¾ff.AUATUSHdH%(HD$1H~HcHH)H;w|$HD$dH+%(|H[]A\A]DHHH(H6P^Cy HHH?HH)L$I HAH)IHAHHL$fDIHjIHJ<'tH55HC I9IMH9t H9 ILkI$H=ɚ;H='hH=?BL H=1H=H uHH9W :HCHCDL$L *1N'HiII4HIDH?zZH9}Hc H9JHo#H9HƤ~H9HHDHDEHHCI<$JE1A1HvHH9HrN H9wHH9H Hc1H Hd@HHHHo(HH-HHC(H0HC HHT$˿H{(fHHT$H{(f.H#NJH9H@1H=HH TH9H 1H=H|H]xEcH9H`IH!Hk(!AVAUATMUHHSH˨uQHRHyLHN(AH~H|HLHIHtHEAul[]A\A]A^ u[LH]A\A]A^yfHLƒA YEHES(H3[]A\A]A^ffD{$C$H9HcH>IHM(WH}1Ht:I#NJHHSL9@HH#NJHEH9H5HPH9HMHU H9tE MH9dHHUHBHEHDH=ɚ;MH='Hc61H Hf.HHBHHEE|A$€A$Mf @A$X@[H1]A\1A]A^׿HM(H1MtHHHHHHH)Ƹ!HEA$1I]HM(1IM@EtM/M$EuDHHH9\@:NDH?zZH9HvHH9 HrN H9HH9H HP?H=?B H=`1H=HLHc H9wpHo#H9HƤ~H9HLH3 HM(HELHc1H=HH#NJH9HH TH9H 1H=HH]xEcH9HeDAWAVIAUIATUHSLHH4$dH%(H$HBHD$xHD$HH$HBH$HB H$HB(H$HAHD$PHAHD$XHA HD$`HA(HD$h@D$p@D$@H9IH9uH$L9(IL9HXLIIMHc HDŽ$KH$HH$HH$HI+FHH$H$H9 H9ML;<$!Mt+I9t&A$uI|$(&A$u L&t#AuI(&Au L&1HH<$1H$dH+%(GH[]A\A]A^A_fDHD$@L$LL$HLHD$LL\$pMLLLLL\$OMLLLHt$MLH$LHAHd H$HXLIH$LH${OHD$:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}valid range for prec is [1, MAX_PREC]valid range for Emin is [MIN_EMIN, 0]valid range for Emax is [0, MAX_EMAX]valid values for capitals are 0 or 1valid values for clamp are 0 or 1context attributes cannot be deletedinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)argument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strinvalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICinternal error in flags_as_exceptionvalid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]internal error in context_setroundinternal error in context_settraps_listinternal error in context_setstatus_listoptional argument must be a contextoptional argument must be a dictformat specification exceeds internal limits of _decimalinternal error in PyDec_ToIntegralValueinternal error in PyDec_ToIntegralExactconversion from %s to Decimal is not supportedargument must be a tuple or listcannot convert signaling NaN to floatcannot convert Infinity to integercannot convert NaN to integer ratiocannot convert Infinity to integer ratiooptional arg must be an integerinvalid signal dictsignal keys cannot be deletedTrueFalseO(nsnniiOO)argument must be a contextFInfsNaNexponent must be an integer%s%li(i)|OOOOOOOODecimal('%s')format arg must be str.,invalid format stringdecimal_pointthousands_sepgroupinginvalid override dictargument must be an integer(OO)OO|Oargument must be int or float-nancannot convert NaN to integerrealimagexplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtcomparecompare_signalmax_magmin_magnext_towardquantizeremainder_nearfmais_canonicalis_finiteis_infiniteis_nanis_qnanis_snanis_signedis_zerois_normalis_subnormaladjustedconjugateradixcopy_abscopy_negatelogblogical_invertnumber_classto_eng_stringcompare_totalcompare_total_magcopy_signsame_quantumlogical_andlogical_orlogical_xorrotatescalebshiftas_tupleas_integer_ratio__copy____deepcopy____format____reduce____round____ceil____floor____trunc____complex____sizeof____enter____exit__precEmaxEminroundingcapitalsclampadddividedivide_intdivmodmultiplyremaindersubtractpowerEtinyEtop_applycopy_decimalto_sci_stringclear_flagsclear_trapscopycreate_decimalcreate_decimal_from_floatotherthirddecimal.Decimaldecimal.ContextManagerctxROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCdecimal.Contextdecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clamped d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJ?B 9$|k?䌄_wC_"@CC?argument must be a DecimalO|OOnumeratordenominatorO(O)modulointernal error in dec_mpd_qquantizeexact conversion for comparison failedCannot hash a signaling NaN valuedec_hash: internal error: please reportXH8(pNNL NjLMLMKN9KNJPN[J@NI0NoI0II,-4޵y8PJ*m<%s:%d: warning: bit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtuplecollections.abcMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContextdecimal_contextHAVE_CONTEXTVARHAVE_THREADSBasicContextExtendedContext1.70__version__2.4.2__libmpdec_version__%s:%d: error: SNANINITY+Infinity+Zero+Normal-Subnormal-Infinity-Zero-Normal+SubnormalgetcontextsetcontextlocalcontextMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYdecimal.SignalDictMixin/builddir/build/BUILD/Python-3.7.17/Modules/_decimal/libmpdec/context.cmpd_setminalloc: ignoring request to set MPD_MINALLOC a second time /builddir/build/BUILD/Python-3.7.17/Modules/_decimal/libmpdec/typearith.hsub_size_t(): overflow: check the contextrx.$`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"!  @ @ @ @ @ @ @ @Kvl?x?it] O"^ add_size_t(): overflow: check the contextmul_size_t(): overflow: check the context/builddir/build/BUILD/Python-3.7.17/Modules/_decimal/libmpdec/mpdecimal.clibmpdec: internal error in _mpd_base_ndivmod: please reportinternal error: could not find method %s%s, ; X  hm6rh=wPG|GtQ8S`TX( h< xP d x  h  ( H< xP d x  H X h 8$ t h H d8 4H\pHXH Hpx <8`|8p8 @H(<8,d(0l 70:`h<=?X@,8BXDEGIK4xM`NXPXR8TxU<VpHY[x^4apc(fi,mpphtw$H{`~(PhHHdh HD | D!ȫ!x!!! "X,"D"\"""Ȱ#L#h#8#$ش<$x$H$$4%8p%%%&xX&&X& '8H'('h'$(\(x(( )P)d)h))*x4*(h***8+8+l+H++,H\,,h , -L---8.<.Xx..x!.$,/&h/*/.0H1H010X6080(>0>08@<1@T1(C1D1HE1E28R`28S2S2xT2XU3XV`3[3]3^4bt4(f4xh<5j5n5o6XoH6{6}68~7~<77h78T8888@9x9(9؍:<:p:ؐ::8;ؕP;Xx;h;(;X;;x4<H<ȡ<<==t>ȶ>h>X????h(@8t@@(AhdAAAh4BpBHBBpChCCXDxD(DHEEEhFTFHFhpG(G,H|HHI)I(+IX40JXBBB B(A0A8G` 8D0A(B BBBB 4@ZHQ(FAN0 DBC ( <FAN0 DBC (D BID0\ DBG Hp FBB B(A0A8K`" 8D0A(B BBBH \ wFDA A(D0 (A ABBG I (F ABBD Z (F ABBC @ +BBB E(A0G 0D(B BBBK 4` FBA A(D0(D ABB lEE[ H \L FHJ KpExFFFFFUp  DABI < FJD e DBA K DBG YDBH iH B F 8d FBF D(DP (D ABBC 0 t FCA G0  DABD l 0 FBB B(A0F8G 8D0A(B BBBD DmBDFAD P,d CFHTY DBG , "CFHTY DBG 0 $HFCA G@  DABF 0 %HFCA G@  DABF 0, 'HFCA G@  DABF (` $(FHT@ DBH ( )FHT@ DBH ( +FHT@ DBH ( @-FHT@ DBH (.FHT@ DBH (<0FHT@ DBH (h\2FHT@ DBH (4nEHT@ AAH (T5nEHT@ AAH (6FHT@  DBK (l8FHT@ DBH (D :>EHT@ AAG 0p4;@FBA Dp  DBBE 8@<FGB A(GP (D BBBH 8>FGB A(GP (D BBBH H@FBG B(A0D8Dp 8D0A(B BBBB 8hFEE E(D0t (B BBBK O (E HBBH |P>0FBE B(D0D8JT 8A0A(B BBBA  8L0A(B BBBF } 8L0A(B BBBN @>T0FEB D(D0DPm 0A(A BBBB L?@' BEB B(A0G8G @ 8A0A(B BBBD d? FBE B(D0A8G 8A0A(B BBBI r 8F0A(B BBBO  8H0A(B BBBI  8A0A(B BBBI L?BBB E(I0D8G  8A0A(B BBBK @L@80BBH H(D0J 0A(B BBBA L@$BEB E(G0D8Gy 8A0A(B BBBE @ FEE B(D0A8J 8L0A(B BBBM  8D0A(B BBBN l 8D0A(B BBBG ^ 8H0C(B BBBO  8A0A(B BBBJ LA qBBB E(D0G8M> 8A0A(B BBBA LA4 FEB B(D0D8J? 8A0A(B BBBF L0BBEB B(D0D8Q  8A0A(B BBBG LBBBK B(D0D8JM 8A0A(B BBBF 8BDFBE D(G@V (A BBBK 4 CFED w BBF PBB4DC FED o BBN PBB0|CFG R BO D BJ yB@CFBE D(D0G 0A(A BBBH @C FBE D(D0G 0A(A BBBH L8D,"kFBE G(D0O (A BBBB A (A BBBH DL# FEE E(D0D8Dv 8D0A(B BBBL X 8A0A(B BBBF c 8D0A(B BBBH X 8L0A(B BBBK T 8J0G(E BBBH  8J0A(B BBBK TEp,FBE E(D0D8G@R 8J0A(B BBBJ h 8L0A(B BBBK D 8A0A(B BBBJ D 8J0A(B BBBI pE0FED D(D0U (D ABBK  (A ABBC o (A ABBK D (H DDBJ H\F2FEE E(D0D8G 8A0A(B BBBD FPF,3 FEE B(D0D8J 8A0A(B BBBE LGh< BEE B(A0A8G  8A0A(B BBBC TlGEBBB B(A0A8H Q GЁ 8A0A(B BBBA TGHBBB B(A0A8H Q G: 8A0A(B BBBA LHKFEE E(D0D8G  8A0A(B BBBD lHF pHQFBB D(D0 (A BBBE C (D EDBF A (D BBBE A (D GBBH IDUCIUWE,IUWELDIVBEA D(G0 (A ABBH I (F ABBD I#0LIV8FFD E(D0] (A ABBD  (A ABBB |JWFBE E(D0D8D@ 8L0A(B BBBK   8A0A(B BBBM T 8A0A(B BBBB HJZFOA A(D0e (D ABBG @(D ABBHJX[.FBJ E(D0D8GP 8D0A(B BBBD xK<]FGB B(D0A8N~ 8C0A(B BBBB  8A0A(B BBBE 8F0A(B BBBxK_FBB B(A0D8L 8A0D(B BBBA W 8A0A(B BBBA D8C0A(B BBB\LtbFNE I(G0C8FP 8A0A(B BBBF D8F0A(B BBB0pLcFLA G0  DBBF (LcFDQ0[ DBD HL$drFBB B(A0A8GK 8D0A(B BBBC MXfEG EE H@MgyFED D(G0x (F CBBI J(A ABB4M8g^FED m GBS ABBM`gE8MgFBA A(D@~ (A ABBF tN0kkFBB D(G0P (A BBBD E (G BBBN n (A BBBK C (F EDBE LN(oLFBE E(A0D8J 8A0A(B BBBG LN(uFBE E(D0D8G 8A0A(B BBBE 0,O{uFDD y ABF _CBlpllllllllmmA@@t~~8'h ` xWo  U = ooPooPof0`@`P```p`````````aa a0a@aPa`apaaaaaaaaabb b0b@bPb`bpbbbbbbbbbcc c0c@cPc`cpcccccccccdd d0d@dPd`dpdddddddddee e0e@ePe`epeeeeeeeeeas_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> i-!i.&i8*i8-i@73i``6>i@5Hi 4Ri0@3^i1pi00i/i.i``.k-i@ -k,i +i*iZ&i%ip  $i@n`#iPn"in`"in!jn!jo !j@o jpo "j,jP 9jwioBjoLjPRj [j`gj lj{j@jpj7j: j > jPC` jF jpI` jLjPPjSj0Wilk0  k`&k-'k-4k@?klJkp*Tke]kfgk0gqkg}kl @p н pn0-kk`kwwkwxk w0xkm@kwyk0wpyWj mV&in@V*ipU-i0rU8is U3iuT>i@w`THizTCixSRiP| S^i~RpiP|`RiRk`QiЋQi` QkPkPk PkOi`Ok0OiNk`NiPNiMk@Mi@LkpKk`Ii Il@w`Hl`wGLj /`Gi.Gi`1Fi02@Fi3E"j/Ej3 Ej4Djp5`D,jp0Dj@6C lip.`CRjACl 7B[j@`BgjEBlj@A{jD`A l`Aj@j@@j@?j?j@@?j@M?j@c>jR`>j>jV=jZ@=.lPm=:l0m<k{?k~Fl{`<Kl;Zl0:ggggggtlzlgtlgtlgtlgtlgtlgtlgtlgtlggggggggkgkg|igl7n6mm6m6m6mn6m6m6mmm'nsmkkkkkk4l@l6m.mOmGmhm`mm{mmm6m.mmmmmmmmm@sm nn@'nn7n/nlhmP`a`h9^`YXl obm`pm}}y`zVdb`{ijo&ikgtlgtlgtlgtlgtlgtlgtlgtlgtlgtlglocalcontext($module, /, ctx=None) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module&s`z1szRlzznst{Dul@{l_decimal.cpython-37m-x86_64-linux-gnu.so-3.7.17-3.el9.x86_64.debug9B7zXZִF!t/G|]?Eh=ڊ2Nax M'>¹>`lb#Sk!QezeTʁ}Bwα03ɗYrc4'{Q8B'ZO iF=1 0 #e}0-?ʝ !~],klY~30GnFPB7hHּn^fbӯoϧ+AЖ$&a;qw/$0Hy.IW<5rZ<(+ ! /0D8S9i`hd6r;qg,q쯞zC3>܇rF_UV3ÍR? @m 3p`„{ ۑ@nwD+Ӿw[ys>m0jӄ ^b1ME-;h6ZG~@;{U=_~ҽҚb-U?J))iHD#f>LT3B":sҐZc(Cdyi#ib="ВMU ,.~(O8c{mykx}\:B <ֽEtx oTj[qjǽ*,#Τi  ӨHH?@wˠ,?֟ضDS '` b^M*ikq9?ʽ](Sم׶Kkԗū߁P5_Y-Ln9 5rꯢMZAq4ld3|$UNn({VXbM>udJwe|#ө%1BӬ@G Zڑ8@*,+Kt$w8 > ,4?=i<܃c3Q؀c5= ާcU,\/CH@7Xp,WuPsEۆ{Qf:Rw{:k-L\bǛ)V –WD0…d.- L~ [0o}QNGiNTM ;a B)00 '[Ak}D̺PkL}p8]&)!йR+h%M׳e!̇|U%ZT`0R)m֕|,^Q(DQK)T\0<O"?iẝו:m8~`+M4dEư3.[:AI!G7榨LY8^V' \x)kk}{Nl* >D`Рxoz\@QW.QawI_^yT`[LΐhJn toʤU\0N m;cVD&\mamEK3f.ed)ye&wcċ UR vz=/uh@>|4>ek괓(6jH>iNSq-B\:=41cn.Ӡ< M/w>5[ Q }-qh8řUl]G~%o[Pz]c2-4hʧ92_;0j%m}c7vACņ0iMI @>,nMU m!C/r1d$5x~ J9'ޡtb#)uŠ^ j7otoh2>"\g,+Bs: }.(Epk+o3oWԝ.Ę+&.`ɎӪA_izm~aFꌴB:u9H書Y Snz{5Қ%k lM _JYk HDBH/s>6؇wsNJq"c0B.0ށ: t}䅿$Cm B 8lɹʳ#sV 8J>SvG5 ATp;dHIt*\6Eח zeVir #Q_?ԓ؀*S}K r"dIM[Z_veh<e]<A*XTjDHs_ۦZ>6_[FI)C]XuV 蝌 `r6KKX?40GZQqVPގYt%MjN٣{yi P|ȼk-.4˻G_pEVПyCH;- K兒E(bD1T7W2~u̠$ED2Sۤ4}!62Cgtb8+S{Cka$uv >7*7h3mP&G@Ix@֑ae&E6\*M953HEv~a/O@:bE%E^0OZeN6>ڤg)w##F6SPWA}>>/3\Е7*3#&t[P6M=ė],p'/iQM~F!H6އo &ɶ` EA7~]rx ΁PY(vݰ*Ny{qJx2x `;0F=tl~jde8Cbkzޙ_Zy5 h7e2I<bp 1ųW`a<$K@6;#7,D-:yX\JR,b<}[qf[L}?Rc<\waՠ{vAf&dG e] 巩>8}-ӆVR<]6HܮP x|`pPUUXMug (}tFF_=>V?( elsZ0W>(!{'|Nz\ז$RՋoGQCr9zJ2pN bY'Q谋@IUkl 7TDlLs2k>(@t 7(O^I} Z\RbKlyRP p͘=;7¹Urz.FԾI(827RAn"CekUƣmd>0 _c"_N!xw.U)! =J7){ kּ& Nc4¿DTaSp#Y=gBJŹM꜏F,{T }^ҽ$  `j8k?Z7soSE_`c Əl ?@aI&qm%nM ^aGK-3^qцǚ<>'h%RnUJ:MlӲX!w[l>=B,G<>7E.I!dA|m>; C3ݻml5U|fc},N(zQ7›cF.:a kLm+ 9BI& ' rME+YeKD#v_1X1 iQ#1ɍ#a+:H6QN͇>Uh(K5]7$84M5#cIMx#FgYZ.shstrtab.note.gnu.property.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.sec.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.gnu_debuglink.gnu_debugdata  $1o$;  CKoPPXoPP`g =qBUU{``v ` `ffkkxWxW ``f! hh 88`Op  ~  ~ n   nHhn$