ELF>@@8 @xxGGP))888$$Ptd<<< QtdRtd` ` GNU_;r+mVV pYysOG~] B  H[ X x  .  e [ s R ;     i 'p 7    y2}  o h *  K #  )  R   = ^( 2 "  e "  2 ; ^e+ v N^  U  H  ? U , ]Q n     97Z ,; q gvR  { Jc r 3{  3 G Li  HE , E2  M}  F"v x g hU `J __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyInit__decimalPyModuleDef_Initmpd_traphandlerPyMem_Mallocmpd_mallocfuncmpd_reallocfuncPyMem_Reallocmpd_callocfuncmpd_callocfunc_emmpd_freePyMem_Freempd_setminallocPyLong_TypePyFloat_TypePyType_FromMetaclassPyUnicode_FromStringPyDict_SetItemStringPyImport_ImportModulePyObject_GetAttrStringPyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_AddTypePyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_NewPyTuple_PackPyModule_AddObjectRefPyExc_TypeErrorPyExc_ZeroDivisionErrorPyObject_CallObjectPyContextVar_New_Py_TrueStructPyLong_FromSsize_tPyModule_Addmpd_round_stringPyUnicode_InternFromStringPyModule_AddStringConstantmpd_version_Py_DeallocPyModule_AddIntConstantPyErr_NoMemorystrcmpPyExc_RuntimeErrorPyErr_FormatPyType_GetModuleByDef_PyObject_GC_NewPyObject_GC_Track_Py_NoneStructPyArg_ParseTupleAndKeywordsmpd_qsetstatusPyLong_AsSsize_tmpd_qsetprecPyExc_ValueErrorPyErr_SetStringmpd_qseteminmpd_qsettrapsmpd_qsetemaxPyErr_OccurredPyContextVar_GetPyType_IsSubtypempd_qcopympd_maxcontextmpd_qset_ssizePyContextVar_SetPyObject_GC_UnTrack_Py_ascii_whitespace_PyUnicode_ToDecimalDigit_PyUnicode_IsWhitespacempd_qset_stringmpd_seterrorPyList_NewPyList_AppendPyErr_SetObjectPyFloat_AsDoublePyComplex_FromDoublesmpd_isnanPyFloat_FromStringmpd_issnanmpd_isnegativempd_to_sci_sizePyUnicode_Newmpd_delmpd_set_flagsmpd_setdigitsmpd_qfinalizempd_qimport_u32PyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyTuple_TypePyUnicode_Comparempd_qsetroundPyDict_SizePyDict_GetItemWithErrorPyObject_IsTruePyExc_KeyError_PyType_GetModuleByDef2mpd_qadd_Py_NotImplementedStructmpd_qcmpPyComplex_TypePyObject_IsInstancempd_isspecialmpd_qncopyPyComplex_AsCComplexPyFloat_FromDoublempd_qmul_Py_FalseStructPyBool_FromLongmpd_qcopy_signmpd_qdivmpd_qdivmodmpd_qdivintmpd_qremPyType_GetModulempd_to_sciPyUnicode_FromFormat_PyType_GetModuleByDef3mpd_qpowmpd_qpowmodmpd_qsubmpd_qplusmpd_qminusmpd_qabsPyArg_ParseTuplempd_qcomparempd_qcompare_signalmpd_compare_totalmpd_compare_total_magPyErr_Clearmpd_qcopy_absmpd_qcopy_negatempd_qnewmpd_qset_uintmpd_set_signmpd_setspecialmpd_qexpmpd_qfmampd_isfinitempd_isinfinitempd_isnormalmpd_isqnanmpd_issignedmpd_issubnormalmpd_iszerompd_qlnmpd_qlog10mpd_qlogbmpd_qandmpd_qinvertmpd_qormpd_qxormpd_qmaxmpd_qmax_magmpd_qminmpd_qmin_magmpd_qnext_minusmpd_qnext_plusmpd_qnext_towardmpd_getprecmpd_getroundmpd_getemaxmpd_geteminPyLong_FromLongmpd_getclampmpd_qreducempd_classPy_BuildValuempd_qsetclampPyList_SizePyList_GetItemmpd_qquantizempd_qrem_nearmpd_qrotatempd_same_quantummpd_qscalebmpd_qshiftmpd_qsqrtmpd_to_eng_sizempd_qround_to_intxmpd_qround_to_intPyObject_GenericSetAttrPyExc_AttributeErrormpd_qsset_ssizempd_set_positivempd_qget_ssizempd_ispositivePyObject_GenericHashmpd_arith_signPyObject_CallFunctionObjArgsmpd_adjexpmpd_lsnprint_signalsPyList_AsTuplePyTuple_SizePyLong_AsLongsnprintfstrlenmpd_iscanonicalmpd_qexport_u32_PyLong_FromDigitsPyExc_OverflowErrorPyUnicode_AsUTF8AndSizePyExc_DeprecationWarningPyErr_WarnExmpd_parse_fmt_strmpd_qformat_specPyUnicode_DecodeUTF8PyObject_CallOneArgPyErr_ExceptionMatches_PyImport_GetModuleAttrStringmpd_validate_lconvPyUnicode_AsUTF8StringmbstowcsPyUnicode_FromWideCharmpd_signPyLong_FromUnsignedLongmpd_clear_flags_PyLong_GCDPyDict_NewPyDict_SetItemmpd_etinympd_etopmpd_isdynamic_dataPyLong_FromSize_tPyObject_HashNotImplementedlibmpdec.so.3libc.so.6GLIBC_2.2.5/opt/alt/python313/lib64:/opt/alt/openssl11/lib64:/opt/alt/sqlite/usr/lib64+ui 5PJJ $)2 7(<0E8@P`p)а)ذK K(@KH`KhKKKȱQ)K K(U0@P`pKKȲKK K(@KH`KhKKKȳ [ $()0287@<HEPXpJbдkt} (W8;@HX@;`hPx:ȵص@`3(8HX`h %`bQi`ȶqض`r`}` ( ~8@H~X``hxP@ȷطP,` (8`@HX`#h cx2P `9pDȸhظ8`xKy 3(z8@@SH |X`[hx dp&yȹ)عЂ@. (#8@@HX `h0xPȺغl`Pm (m8@H`nX@`hnxpop Ȼpػq`p (8 @ H0eX@`)hex6fB s`Gȼ uؼV@c1  q(8@HX `hxfs Ƚuؽ w` (P8@HpX `hx3Ⱦ  (p68 @-HX`G Q*ȿؿ@ 0 (8@H X@`h`=x ``= 0F 5#@4 8(8@KHX`3hx`S@dp0A  j' (8@&@HПX%`hx@%p$`#`"P"! ( 8#@HX!`Whx@86`p@.`  -6 , B(`8@@GHX@`VhPxqP0`.X* (@8@HX`hx@`@  <:'j7 (H86@H`sh`E  (H@H W`hp 8@HP`h$7`P 2) (@<HP hEpx   (08@HPX`hpx +#D<_W y(q`h  (@H`h %; 0TW(`HIXh3x8@`@]Z(^8aH aXhxP;P\P@(8Hx`d@PW 0(80D8F@KHOPPXW`ohupvxx{ȯЯد8hXLШب   ( 0 8@HPX`hpx !"#ȩ$Щ%ة&'()*+,-. /(10283@4H5P6X7`9h:p;x<=>?@ABCEGȪHЪIتJMNQRSTUV X(Y0Z8[@\H]P^X_``hapbxcdefghijklȫmЫnثpqrstwyz| }(~08@HPX`hpxȬЬج (08@HPX`hpxȭЭح (08@HPX`hpxȮЮخHHq/HtH5(%(@%(h%(h%(h%(h%z(h%r(h%j(h%b(hp%Z(h`%R(h P%J(h @%B(h 0%:(h %2(h %*(h%"(h%(h%(h% (h%(h%'h%'h%'h%'hp%'h`%'hP%'h@%'h0%'h %'h%'h%'h%'h %'h!%'h"%'h#%z'h$%r'h%%j'h&%b'h'p%Z'h(`%R'h)P%J'h*@%B'h+0%:'h, %2'h-%*'h.%"'h/%'h0%'h1% 'h2%'h3%&h4%&h5%&h6%&h7p%&h8`%&h9P%&h:@%&h;0%&h< %&h=%&h>%&h?%&h@%&hA%&hB%&hC%z&hD%r&hE%j&hF%b&hGp%Z&hH`%R&hIP%J&hJ@%B&hK0%:&hL %2&hM%*&hN%"&hO%&hP%&hQ% &hR%&hS%%hT%%hU%%hV%%hWp%%hX`%%hYP%%hZ@%%h[0%%h\ %%h]%%h^%%h_%%h`%%ha%%hb%%hc%z%hd%r%he%j%hf%b%hgp%Z%hh`%R%hiP%J%hj@%B%hk0%:%hl %2%hm%*%hn%"%ho%%hp%%hq% %hr%%hs%$ht%$hu%$hv%$hwp%$hx`%$hyP%$hz@%$h{0%$h| %$h}%$h~%$h%$h%$h%$h%$h%z$h%r$h%j$h%b$hp%Z$h`%R$hP%J$h@%B$h0%:$h %2$h%*$h%"$h%$h%$h% $h%$h%#h%#h%#h%#hp%#h`%#hP%#h@%#h0%#h %#h%#h%#h%#h%#h%#h%#h%z#h%r#h%j#h%b#hp%Z#h`%R#hP%J#h@%B#h0%:#h %2#h%*#h%"#h%#h%#h% #h%#h%"h%"h%"h%"hp%"h`%"hP%"h@%"h0%"h %"h%"h%"h%"h%"h%"h%"h%z"hxHIEuLHxUHHuLE1E1HMtI$xHI$uLMtIExHIEuLzHcSLxHLe{1HLHM^1HL+LHx7HH4"HyI$$PL I$HLKH*H~Hx HHtJIHIL\HHHH7H*H HH5IH81=1@H1HSHx HHt!1HIHxHHuHHՃ]JH^ H5JH8KHC H5,JH8KLl$NHx HHt-1NHExHHEuHGLl$MH3I$I$jSSI$M$NS!SI|$HPI|$HPI|$HPI|$ HPI|$(HPI|$0HPI|$8HQI|$@HQI|$HHQI|$PH(Q0QI|$@ID$@RQI I}SQsQI$I$wRQI|$`ID$`aRQI I}%RHR11RH{@HRH{HHR1[]A\Hx HHt1UHAm: TugkaWrMEA'H,$1H@ HxVHHtIAoD$1HCAoL$ K AoT$0S0C0AD$PCPRt$Ht$Ht$HLL$HLD$@HL$8HT$0Ht$(O3H xjI>IHtHXEELIl$'L$$H5w&I|$ 1H@ HxHH7HHHH HHHHIl$LHHSHSHH=+1VHHH HH[]A\1HzU[HH#VH^VXH[]NIlVI$x HI$tFIEx HIEt>LȓwL LzH·LLA$tA$H}LrH{Lx IwH9IVLHHT$bL1bHcHHcHycHpcaH`cHHScHFcI$x HI$t#1mHExHHEuHxLnI$x HI$t\IEx HIEtTIfHIfL(eHeHHeHeLLLٺIEHIEL阺L IEx HIEtFHEx HHEt>I$[HI$MLc@HV3LIH?H5и髺HZt*#阻)H0t頼陼H t鍽醽鄾I$x HI$t#1THExHHEuHLuI$x HI$t#1տHExHHEuH@L6I$x HI$t#1VHExHHEuHLI$x HI$tNIEmHIE_LRHEFHHE8H+LI$x HI$t#1HExHHEuHXLNI$x HI$tNIEHIELHEHHEHLI$x HI$tNIEHIELHEsHHEeHXLzI$x HI$tNIEpHIEbLDUHEIHHE;H.LI$x HI$tNIEFHIE8L+HEHHEHLI$x HI$tNIEHIELpHEHHEHILI$x HI$tLIEGqHIE9qL,qH!qHHqHqLI$x HI$tNIE<HIE.L!HEHHEHyLlI$x HI$tNIEHIEL6HEHHEHL먉`I$x HI$tNIEHIELHEHHEHLI$x HI$tNIEHIEL[HEHHEH4L'HqHHqHqHEqHHEqHwqI$x HI$tLIEsHIEsLysHnsHHasHTsLs1JI$x HI$t#1HExHHEuH2L(HEx HHEt#1xI$xHI$uLHID$8HHHtID$87u[]A\hHYH5ZH8{1HHD$HD$HExHHEuHb1>HExHHEuHAt6ULHqw;gw1LUwHH5H8LHx HHt1eyHHu 1HHH[]A\A]L|HH11HHExHHEu HrHH H5H8e1YHH{HH5H8-H{HH{8HHHHH~HqHdHW!HJDH=SH0gHH5H8%H@YM:_XHExHHEuH1BHExHHEuH1|H1[]A\LtzHW |}|sH;|HH5 H8@}H|邀HH5H8 (HEx HHEtwI$ HI$LHHEHԂM}HLQLp MnM9MdHpHc|HVH|$@HGHt$HIHthHT$HH|Nu)HH5RH8¿x4HT$HH~hA?ubHzHT$HT$HIZڿ1HĈH[]A\A]A^A_H蛿HOH51H8ċSPLL讽DME1H|$ H*L|$hLHL|$pLȿHHSHL$LH}sHHH菿HD$HHE1HHH|$8HtHxHHu貾H|$0Ht HH|$(Ht HEHHHHHLHL_SP腼trxAfD$cLBILl$@H*HHAIH\IHExHHEuHϽM ILH LH5 1踼HI$xHI$uL苽HH+H;cH;H5 1eH5 H=b IHnHG HL$hHT$(H5W H|$ HL$pHT$0H5B ^H|$ HL$xHT$8H5- ;LKHLH5 H8蝽A?ILHD$(HtNH HD$h)A?H0LI$x HI$tBHEHHEHٹHH5H8κL豹L觹uL蚹I$x HI$tOHEJHHE<Ha/HH5H8VH9 L,L"L;I$x HI$tOHEHHEwHܸjHH5H8ѹOH贸EL觸L蝸L萸vI$x HI$tOHEHHEHWH H5 H8LH/L"LI$x HI$t=HEx.HHEu$HI$xHI$uL˷1L輷H買HfH5gH8觸HxHHuH}LsLfHYH H5H8NI$x HI$t'HEHHEHLH!sL׶'LʶH轶HqH5r H8買I$x HI$t'HEHHEHiL\LRbLEH8IHH5 H8--I$x HI$t'HEHHEHL׵HH5 H8϶L貵I$x HI$t[HEdHHEVHyII$=HI$/LR"HEL8L.H!LI$x HI$tBHEfHHEXH۴KHH5 H8е0L賴L詴H蜴L菴UI$x HI$tBHEHHEHVH H5 H8KkL.L$HL I$x HI$tBHEHHEHѳHH5 H8ƴL詳HH[]HHD$萳HD$H1E1iH1E1W}H1E1@H311E1E1HT$JHE1 6H)HE1dH1[]A\Lx1LA0IHyfIEHAE0AE foAlIEIE@AE0M;wuLRMuHT$HL>L.1HLIE E1kIIExHIEuL0MxLHIHشHH IHHMIHHM1IExHIEuL輱HH[]A\A]A^A_H袱0xLIH\xIEx HIEt8荱@x1Mu HLIU jIIE L2MRHAHHA$HHIEHHLMHH8HLA$IIxHIuL觰M+HHA$IHExHHEuHsH6MLL1譹HI$hHI$uL,MMbHH H HIELA$IIxHIuLƯMt^觲IHHE1HEMHHEI?Hx HHt'HE/vHHE!vHAvH4HHHHHEu]HH1M"uHL1AHHEyI$HHEuH賮1~HcH5dH8褯1/I$x HI$tRHExHHEuHaI$xHI$uLEL;H.4L!HH5H81 LI$x HI$tEHExHHEuHɭI$xHI$uL譭H裭 L薭HMH5NH8莮1LoHTtHzI$xHI$uL1H'H1[HHt$ Ht$H1[HHt$Ht$%HHEPHHEBH趬5HtHHH5BH=H5 H@ H1H<t%HLH HK #LHHDHLPHPH= 1$t$P$t$X$t$`$t$h$t$p$t$x$L$L$HL$xH$Ht$pqHpHQATIUHSHHHu I|$Hu HӅt!HӅuI|$1Ht HH[]A\[]A\ÐATH5wUHS L` I9l$H膬HHI|$ 1nHC@H I|$ 1UHCHHIT$@HtqoBHK(CoJ K oR0HS@S0HJHS,HPCPHCXI;l$uHaH[]A\1H0HHX鍶HS@H{ H5HK(HJHS,HP1CPHCXI9l$tLff.HG1DSH HHHHH@HH$HD$HD$HD$HD$ HD$(HD$0HD$8HD$8PHD$8PHD$8PHD$8PHD$8PHD$8P1LL$8LD$0H0еHHt$@t$@t$@LL$@LD$8HL$0HT$(Ht$ H H@[f.AWIAVIAUMATMUHSHHLH9I9I9I9I9H9\$@H9\$PH9\$Hu1H[]A\A]A^A_ÐHD$HH@YH}H5jHt$HHx |GƩH}Vu۴DH耫HHH}/HH5H8L`f.1LHxEI9LHH H}hHH5H8fHD$PH@H}H5jHt$PHx |FƩuH}zDL耪HHH}誯JHH5dH8L]Ht$@1HE%:@LHtPHwXEPH HH}IHt$PH{轫HHMH5H8螧蔫HHH}辮^Ht$HH1҅OhSH`HH}ͬAV1H uAUATUHHHSHHPHLL$LD$HD$H\$GL%HL}Ll$Lp I9I~81HT$ +H|$ HHH|$HHLl$H\$LHH@ H}HpH{H9u9LHD$ H@ H;hH;kvt>:۬uH{Ht*HLHHHPH[]A\A]A^fOH5H9L LHHb3HPHH[]A\A]A^HIHt[LLH LHEHPH[]A\A]A^DnHCH5HPHH811@IvI}H9d被HsH5t1H8貤DH HHHsHxHT$ 2t$ L HHHH5H0ͮHHNHIHx HHtM1=HLl$L:tHD$HHHY鄯1HD$ HHGHl$ HR1H{HL$ Ht$ L ,AUATUHSHHLg I<$HVHӅI|$HIHӅyI|$HHH۩LVHHuSH_H‰HHH٩HЩH\©USHHHo辎H{HtHHCx HHtKH{HtHHCx HHH@HExHHE`H[]譄ff.SHHHtH1HSx HHt#H{Ht1HCHx HHt 1[UNff.AWAVAUL-SATILUSHH(HvHD$蝋1HT$Lp I~8艇Hl$Ht=HExHHEڪH}L腊I|$Lx IwH9ҨLTHHu閪DAVAUL-ATLUHSHHD$&1HT$L` I|$8H\$Ht7Hx HH Mt$LLۉLh M;u*鳫LPTHHu鲫AW1AVAUATUHHH5 SH8HL$(HT$ D$܈H}HLd$ H\I|$Lh IuH96A$tA$H}HLl$((I}Lp IvH9CAEoAEH}HHH@ HPHHT$ވHT$Lx MwI9kLPHHfHCHHCC foh;C0HC@C0M9wuH~HMIUIt$H{LD$sI$xHI$IExHIEt$HDH8H[]A\A]A^A_Ð+ID$9I}LHRIH1fIEI~LHIHH}H苇HH@ HPHHT$sHT$Lx MwL9I1H0HH骩LvLiHPHH5jH81xI$&HI$L1$HHHH1HPHH51H81 rAW1AVAUATUHHH5SH8HL$(HT$ D$輅H}HLd$ H*E1fTfV :*f. 2*ADEf.Dd$GfT#*f.*HAIH1HAHI$FHI$8LpHLcH{ 1AIHHrIII^HT$IEHLHD$HHHH_HoH.xHHxIHӜLt$0L|$,LuLLHnHt$LLLxHHMLLEut$,H|$:LMMLHLLLL$BwHxLxt$,H|$TЛLL$t$LtL)HE HhH[]A\A]A^A_DcvH4H5H8uo1HYHHtH}DwIsD$H1HHHtH}1v`HT$HHHH魛fAW1AVAUATUHHH5SH8HL$ HT$D$LD$(srH}HLd$HGtI|$Lh IuH9A$H}HLl$ A$tI}Lp IvH9AEtAEH}HLt$(sI~Lx IwH9AAH}HsHH@ HHHHL$sHL$HP LzI9LHT$nHT$HHfHCHHCC fo&C0HC@C0L9zuH*mINIUIt$H{LL$LErI$xHI$*IExHIEIx HIt$HԚH8H[]A\A]A^A_DsbID$I}LHIHt}H}HLl$ YrI}Lp IvH9J@[s9IEI~LHIHI$xHI$uL-k1/fDr IFILH#IHH}HqHH@ HHHHL$qHL$HP LzL9HT$1IH0HT$HHL|jlHPH,H5}H81rI$xHI$uLAjIEHIEL1j!LjLjHPHH51H81rHPHH5H81qsIDAW1AVAUATUHHH5SH8HL$(HT$ D$oH}HLd$ HpI|$Lh IuH95A$tA$H}HLl$(oI}Lp IvH9@AElAEH}HoHH@ HPHHT$oHT$Lx MwI9hLjHHfHCHHCC fo("C0HC@C0M9wuH>iHMIUIt$H{LD$pI$xHI$IExHIEt$HAH8H[]A\A]A^A_oID$7I}LHIH1oIEI~LHIHH}HNnHH@ HPHHT$6nHT$Lx MwL9I1H0HH鰛L9gL,gHPHܓH5-H81;oI$(HI$L1fHHHH1fHPHpH51H81nuHHChHH7iUHHSH>hH}H5sHc mH@ HTXћHH[]ff.fHH#oHHhHHoHHhHcPhHH#iHHcwhUSHHHHHH5IlH@ HH8OH;XHx :H;X8Hx@%H;XXHx`H;XxHH;HH;HHuH H:H;ZuHА@HU#uH9H[]ÐH&H[]H`f.H f.H@f.HwHep@c1vHH5H8e1YAWH5AVAUATUHSHHj1Dm,Lp aHIIH;u5DH H;t&D#CtHsLRgH H;u1D}(5aIHyIH;u:f.H H;t&D#CtHsLf(H H;uHcU4HuH=HBLMLE H ЋE8HUAUATPEPP1gI$H xHI$IUxHIUH[]A\A]A^A_SHHeHtHH{jt1[ugHu'HH{juHH59H8Ic[@SHH4eHHH{^jt1[HH5H8c[ff.SHHdHrHwCP1[HfH5H8b[fSHHHdHHt>HH uFH{ht1H[H H5H8^bHD$OfHt$Hu뺾ff.AVAUATIHUHSgHZHE1E1LHiI$H:CH9BHz .H;B8Hz@H;BXHz`H;BxHH;HH;HHufDH H9H;AuHfBIA L9 [D]A\A]A^fDH f.H@f.H`f.Hf.H E1[]DA\A]A^;vA~AWH AVAUATUHHHSHHPL=tHD$8D$$L|$8HD$@P1LL$8LD$0]ZYH}H2Ld$ HeI|$Lh IuH9PA$}H}HLl$(A$eI}Lp IvH9yAEHT$0AEL9E1H}HJeHH@ LxL7eHP L;zHT$ L_HT$HHtfHCHHCC foC0HC@C0L;zuH^HMIUIt$H{M*LD$!dI$xHI$LIExHIE)t$HI/HHH[]A\A]A^A_zeID$I}LHIHH}HLl$(dI}Lp IvH9ezIEI~LHBIHHT$0E1L9_Ht$8HLt$8;IFILL$HaIx HItJI$L\L\HxHHuHj\1L[\1LA0HT$HH1HPHH5=H81KdI$xHI$uL1[IHPHH51H81 d&̒fAW1AVAUATUHHH5SH8HL$(HT$ D$aH}HLd$ HXHMIUIt$H{LD$WI$xHI$ IExHIEt$H軿 H8H[]A\A]A^A_^ID$I}LHIH1^IEI~LHIHH}HN]HH@ HPHHT$6]HT$Lx MwL9I1H0HHL9VL,VHPH܂H5-H81;^I$(HI$L1UHPHH51H81]~f.AWAVAUATIUHSHHHHD$ A\H}Lh IuH9EtEI|$H\HH@ LxL\Lp MnM9LxVHH fHCHHCC foC0HC@C0M;nuHUHL$ IT$HuH{RHEx HHEt_t$ LAHH[]A\A]A^A_r\HEtII}HLHH1HVT1LMA0HH4HPHH5:1H81F\h ff.AW1AVAUATUHHH50SH8HL$(HT$ D$YH}HٝLd$ HlZI|$Lh IuH95A$tA$H}HLl$(8ZI}Lp IvH9@AElAEH}HZHH@ HPHHT$YHT$Lx MwI9hL`THHfHCHHCC fox C0HC@C0M9wuHSHMIUIt$H{LD$YI$xHI$ IExHIEt$H ӌH8H[]A\A]A^A_1HPHzjH5˔H81EHE|HPHPjH51H81EYHxHHuH1^=:LHD$HHtH7|ff.AWAVAUATIH5.UHSHHHD$ Ll$PHD$(HD$0HD$8D$C1LLp I~8F@|H\$PHtLd$Mt.I$xHI$)HLHߺ[]A\aHI IHff.AWAVAUATUHoSHHHD$+@umH{L-̃Ld@1HT$L` I|$8=xcH\$HtxHx HHÇMt$LL@Lx M;wl魇Hr=uH?fH5H88:1eHeH5KH8:LQ HHtKf.H=IHBH9tH>eHt H=H5H)HH?HHHtHeHtfD=Յu+UH=eHt H=~\Ad]wH=97@AWH RAVIAUATUSAPHdHTe=eHH eHHdHdHHdH eHHeH@dHu)6HdIn H5HC`o@oH@(fHHcHP`HHR@H3HHAHH5HHrA1HsL14HEHRA1HiL14HEH2A1HW|L14HEHA1H}L14HEH@L-L=HH@HEL%HLHh4AHEHLHJ4AHx HHuAH=B;HHh@H5H75IHAHMH1HXH5z4H*AHx HH@H5ZH4HH@Hx HH@Ix HI@H=:HH?HL 1H HH5-4HE(H&?LHxHIE?H=ǂ9IH>H5H3IH?HMH=aI1HH58HHE HV?x HH8?I$xHI$?IExHIE>1HuHL9z>HuL8f>Hu(L8R>H`1H=H07HE0HH*>L8> 8HH>@H5T|(HAHH =Hu01zp;Hf[ 3H wHuPHWH5yH8+HZø fDUHH5tSHQHg1Hx HEH9G t.H1IEx HIEt"t$ HǍMDH(H[]A\A]L%L%I$xHI$CHl$AU1HoATIUHSH(HHvD$ V,Lh L:H\DHHx HHDHHt$H1hHl$LHt$H1ILd$I}SLl$HHCHxHKIUIt$LD$ $I$x HI$t>IEx HIEt"t$ H臌CH(H[]A\A]L#L#I$xHI$.CHl$PHPH5i|H8$ZfAV1I1AUATIUHSH HHRHvL$H mHD$$Lh LʃHHHx HH1H1Ht$HLLHt$H1ޖLd$\H;- PI}ۊLt$Ll$HHGHKIUIt$HxMLD$(I$xHI$IExHIEuLq"t$HH H[]A\A]A^1Ht$HHOI$xHI$ GH|$HxHHu"Hl$IFILL$H&IFHL$8HT$Ht$0Hl$(I|$~Ld$0HH1FHxHD$8IL$HUIuL@LL$ 6IExHIEEHEx HHEt:I$xHI$uLtt$ H|$8~uxHHH[]A\A]HLIt$HxxHBH5lH8.1IExHIEEHExHHEE1HxHHuH1iff.SHHH Ht$膉taH\$H{t(HBNEHx HHtH [HYBt%EHHD$HHD$1ff.fSHHH Ht$t>H\$H{DHADHx HHt H [1HHD$HD$ff.SHHH Ht$vt:H\$H{u,HqAaDHx HHtH [1HAt4DHHD$4HD$ff.fUHHSHH(Ht$thHl$HsH}u+H@CHUx HHUtH([]H@tCHHD$HD$1fSHHH Ht$Vt>H\$H{4]CHM@`CHx HHt H [1HHD$#HD$ff.SHHH Ht$ֆtMH\$H{Tu(H?BHx HHtH [H?tB1HHD$HD$ff.fSHHH Ht$Ft>H\$H{pBH=?sBHx HHt H [1HHD$HD$ff.UHHSHH(Ht$…thHl$HsH}<u+H>AHUx HHUtH([]H>tAHHD$}HD$1fSHHH Ht$6tMH\$H{u(H1>uAHx HHtH [HI>tLA1HHD$HD$ff.fATE1HHUSHHHt$DL$蘄AH{H5Z`H@ HxxLd$HH@HxHL$HSIt${I$x HI$t t$Hx@HH[]A\L1ff.@ATE1HHUSHHHt$DL$؃@H{H5ZH@ HxwLd$HHO@HxHL$HSIt$I$x HI$t t$Hx+@HH[]A\Lqff.@ATE1HHUSHHHt$DL$@H{H5EYH@ HxwLd$HH?HxHL$HSIt$ I$x HI$t t$H]w?HH[]A\Lff.@AU1ATUSHHH5]H8D$ HL$1HT$HT$Ht$ Hٿ3HT$Ht$(HٿLd$ H{H5v>H8H[]A\A]L L I$xHI$uLj 1fDATE1HHUSHHHt$DL$>H{H5EWH@ HxuLd$HHw>HxHL$HSIt${I$x HI$t t$H]uS>HH[]A\L ff.@AU1ATUSHHH5[H8D$ HL$1HT$HT$Ht$ Hٿ3HT$Ht$(HٿLd$ H{H5t=H8H[]A\A]L L I$xHI$uLj 1fDAU1ATUSHHH5ZH8D$ HL$1HT$RHT$Ht$ Hٿ~HT$Ht$(Hٿ~Ld$ H{H5TH@ HxrLl$(HHo;:H8H[]A\A]LLI$xHI$uLj1fDAU1ATUSHHH5UH8D$ HL$1HT$R HT$Ht$ HٿyHT$Ht$(HٿyLd$ H{H5O H@ HxmLl$(HH9HxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ Hme9H8H[]A\A]LPLFI$xHI$uL*1fDATE1HHUSHHHt$DL$x29H{H5O H@ HxlLd$HH 9HxHL$HSIt$I$x HI$t t$Hm8HH[]A\Lqff.@ATE1HHUSHHHt$DL$x8H{H5EN H@ HxlLd$HH8HxHL$HSIt$I$x HI$t t$H]l8HH[]A\Lff.@ATE1HHUSHHHt$DL$Xws8H{H5M H@ HxSkLd$HH38HxHL$HSIt$I$x HI$t t$Hk8HH[]A\Lff.@AU1ATUSHHH5RH8D$ HL$1HT$HT$Ht$ HٿsvHT$Ht$(HٿTvLd$ H{H5|L H@ HxJjLl$(HHi7HxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ H~jO7H8H[]A\A]LLI$xHI$uL1fDATE1HHUSHHHt$DL$Xu17H{H5K H@ HxSiLd$HH6HxHL$HSIt$I$x HI$t t$Hi6HH[]A\Lff.@UHHSHH(Ht$t6Hl$HsH}8HUx HHUtH(H[]HHD${HD$@ATE1HHUSHHHt$DL$(t 7H{H5UJH@ Hx#hLd$HH6HxHL$HSIt$I$x HI$t t$Hmh6HH[]A\Lff.@AU1ATUSHHH5NH8D$ HL$1HT$HT$Ht$ HٿCsHT$Ht$(Hٿ$sLd$ H{H5LIH@ HxgLl$(HH57HxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ HNg7H8H[]A\A]LLI$xHI$uLz1fDAU1ATUSHHH5MH8D$ HL$1HT$bHT$Ht$ HٿrHT$Ht$(HٿqLd$ H{H5 HH@ HxeLl$(HH_6HxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ HfE6H8H[]A\A]L`LVI$xHI$uL:1fDU1SHHH5gLH8HL$HT$,HT$Ht$ HٿpHT$HHt$(pH\$ Hl$(H{Huu;H)5Hx HHt@HUx HHUtH8[]H)t]5HHD$PHD$HHD$0HHL$1LHC/HcL9/M<H5?F1H8}ff.U1H SHHHH>HH-ZLD$Hl$ttH{H5<9Hx HD$H9tZHwHxLQt/HD$H{HpuWH,H[]HH5EH81*OHD$HtHxHHu+Ht+U1H 6SHHHH=HH-jLD$Hl$ttH{H5L8Hx HD$H9tZHwHx\Pt/HD$H{HpftWH#F+H[]HH5DH81:NHD$HtHxHHu*Ht*ATE11H RUSHHHH<HH-uLD$DL$Hl$H{H5N7L` HD$H9taIt$Hx]OI|$THHtzHD$HsH}HL$HPt$H|$ZUu3HH[]A\L2MHD$Ht/HxHHu*HExHHEuHy1H.H5/C1H8mff.ATE11H 2USHHHH;HH-ELD$DL$Hl$H{H56L` HD$H9taIt$Hx-NI|$SHHtzHD$HsH}HL$HPt$H|$*Tu3HH[]A\LLHD$Ht/HxHHu(HExHHEuHI1HH5A1H8=ff.ATE11H USHHHH:HH-LD$DL$Hl$QH{H54L` HD$H9taIt$HxLI|$RHHtzHD$HsH}HL$HPt$H|$Ru3HH[]A\LJHD$Ht/HxHHu'HExHHEuH1HH5@1H8 ff.ATE11H USHHHHg9HH-LD$DL$Hl$!H{H53YL` HD$H9taIt$HxKI|$kQHHtzHD$HsH}HL$HPt$H|$Qu3HH[]A\LIHD$Ht/HxHHu&HExHHEuH1HH5?1H8ff.ATE11H USHHHH78HH-LD$DL$Hl$H{H52)L` HD$H9uuLHHD$HHx HH%I|$'PHHtaHD$HsH}HL$HPt$H|$Pu8HH[]A\It$Hx(JuHH5>H81HExHHEuH1ff.ATE11H USHHHH7HH-LD$DL$Hl$H{H5^1L` HD$H9uuLGHD$HHx HH$I|$NHHtaHD$HsH}HL$HPTt$H|$VOu8HH[]A\It$HxHuH]H5^=H81HExHHEuH1nff.ATE11H rUSHHHH5HH-ULD$DL$Hl$H{H5.0L` HD$H9taIt$Hx=HI|$MHHtzHD$HsH}HL$HPt$H|$:Nu3HH[]A\LFHD$Ht/HxHHu.#HExHHEuHY1HH5<1H8Mff.U1H &SHHHH4HH-*LD$Hl$kH{H5/Hx HD$H9t2HwHxGtEHD$H{HpBHH[]EHD$Ht+HxHHuG"H8H59;H8y1DAU1H ATUSHHHHF4HXH-VD$ LL$1LD$Hl$Hl$H{H5$.Lh HD$H9LeDHD$HHx HH!HD$Ld$ LHpHt$H9uFI}KHHtHsHxLHL$ t$ H|$Ku\HXH[]A\A]LsUƅxHl$ HH6HD$(HUIt$H{LD$ HH[I$xHI$HExHHEuH{t$ H|$(>u@H0H[]A\HuHx8I$xHI$~1HxHHuH1ff.fAT1H USHHHHy%H0L%D$ LL$(1LD$Ld$(.IH{H5fHh HD$(L9H 6HD$(HHx HHHL$(Ht$Hڿ3IHL$(HT$Ht$ ILd$H}=Hl$ HHHD$(HUIt$H{LD$ HHI$xHI$HExHHEuHt$ H|$(==u@H0H[]A\HuHx6I$xHI$C1HxHHuH1Off.fAT1H UUSHHHH#H0L%8D$ LL$(1LD$Ld$(nIH{H5 Hh HD$(L9HL4HD$(HHx HHsHL$(Ht$HڿsGHL$(HT$Ht$ RGLd$H}\;Hl$ HHHD$(HUIt$H{LD$ HH+I$xHI$}HExHHEuHt$ H|$(};u@H0H[]A\HuHx 5qI$xHI$1HxHHuH1ff.fAT1H USHHHH!H0L%xD$ LL$(1LD$Ld$(kH{H5KHh HD$(L9H2HD$(H3Hx HH0HL$(Ht$HڿEHL$(HT$Ht$ ELd$H}9Hl$ HHxHD$(HUIt$H{LD$ HH+I$xHI$5HEx HHEtHx HD$H9HD$HHx HHHL$Ht$Hڿ2HL$H$Ht$1Ld$H\$I|$Hs.HjHI$xHI$DHxHHuH製H H[]A\HwHx8ff.fHtSHH5uHHHx HHHx HHHHߺ[mvff.fSHH5HHHx _HHHx HHHHߺ[ vff.fAUATUSQHu#H;H5 H8茽1ZH[]A\A]HHH5Lh HCD HHtIH,HsHHH H;tD#C&SHHH5H{H@ Hp+t%H{H[HkH5J H8謼1[USHHoHH#H5g H8tHĨH[]PHƽZHff.fPH&ZHݽff.fUSHHRHGHh yt HC8HlXH[]1HHas_integer_ratiobit_length__module__numbersNumberregisterRationalcollectionssign digits exponentDecimalTuple(ss)namedtuplecollections.abcMutableMappingSignalDicts(OO){}decimal.DecimalExceptionDefaultContextdecimal_contextHAVE_CONTEXTVARHAVE_THREADSBasicContextExtendedContext1.70__version____libmpdec_version__|OOOOOOOO-nanargument must be an integerinvalid signal dictargument must be a contextnumeratordenominator|OOOOOOOOOsignal keys cannot be deletedDecimal('%s')argument must be int or floatOO|OO(nsnniiOO)argument must be a DecimalFexponent must be an integer%s%licannot convert NaN to integerO|OOformat arg must be str_pydecimal(OO)__format__invalid format stringdecimal_pointthousands_sepgroupinginvalid override dictO(O)(i)TrueFalsectxprecroundingEminEmaxcapitalsclampotherexpthirdmoduloMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYgetcontextsetcontextlocalcontextdecimal.Contextlnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtaddcomparecompare_signaldividedivide_intdivmodmax_magmin_magmultiplynext_towardquantizeremainderremainder_nearsubtractpowerfmaEtinyEtopradixis_canonicalis_finiteis_infiniteis_nanis_normalis_qnanis_signedis_snanis_subnormalis_zero_applycopy_abscopy_decimalcopy_negatelogblogical_invertnumber_classto_sci_stringto_eng_stringcompare_totalcompare_total_magcopy_signlogical_andlogical_orlogical_xorrotatesame_quantumscalebshiftclear_flagsclear_traps__copy____reduce__copycreate_decimalcreate_decimal_from_floatdecimal.Decimaladjustedconjugateas_tuple__deepcopy____round____ceil____floor____trunc____complex____sizeof__realimagdecimal.ContextManager__enter____exit__decimal.SignalDictMixindecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampedinternal error: could not find method %svalid range for prec is [1, MAX_PREC]valid range for Emin is [MIN_EMIN, 0]valid range for Emax is [0, MAX_EMAX]valid values for capitals are 0 or 1internal error in context_settraps_listinternal error in context_setstatus_listoptional argument must be a contextargument must be a tuple or listconversion from %s to Decimal is not supportedinternal error in flags_as_exceptioncannot convert signaling NaN to floatvalid values for rounding are: [ROUND_CEILING, ROUND_FLOOR, ROUND_UP, ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_DOWN, ROUND_HALF_EVEN, ROUND_05UP]internal error in context_setroundinternal error in context_settraps_dictargument must be a signal dictexact conversion for comparison failedvalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]valid values for clamp are 0 or 1context attributes cannot be deletedinternal error in context_setstatus_dictCannot hash a signaling NaN valuedec_hash: internal error: please reportinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)argument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strinternal error in PyDec_ToIntegralExactcannot convert Infinity to integerinternal error in PyDec_ToIntegralValueinternal error in dec_mpd_qquantizeoptional arg must be an integerFormat specifier 'N' is deprecatedoptional argument must be a dictformat specification exceeds internal limits of _decimalinvalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICcannot convert NaN to integer ratiocannot convert Infinity to integer ratio{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}$ϻ?B to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. subtract($self, x, y, /) -- Return the difference between x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. radix($self, /) -- Return 10. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. number_class($self, x, /) -- Return an indication of the class of x. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. multiply($self, x, y, /) -- Return the product of x and y. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_invert($self, x, /) -- Invert all digits of x. logical_and($self, x, y, /) -- Digit-wise and of x and y. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. exp($self, x, /) -- Return e ** x. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. copy_sign($self, x, y, /) -- Copy the sign from y to x. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. canonical($self, x, /) -- Return a new instance of x. add($self, x, y, /) -- Return the sum of x and y. abs($self, x, /) -- Return the absolute value of x. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. conjugate($self, /) -- Return self. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. localcontext($module, /, ctx=None, **kwargs) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module ?B?d d K; dC OD Q Q QLR=R@RSSSHST|TUU &VLHVW"WT-WW0W0WWW(#XZZ\`;K;X <ep<r<=X===΃>܃P>>>>4?=?U?~H@@fhAsAzBH|B_B|dCC DTDDDDEEIEΎ,FxFjFGhGGHDH>HɒIdII$J0tJJK`KK/KLLd tdT`$D4 ħ@\4tt(ĭtThıT,tdDLTL(4lxĿTL$T4\|@ h""#d$X+4,T,-,-D-X-p-\.4..,/$d//D,001$334D05567d77t9L?$?@th@At (CT H 0I L d ltTd,Pxd$X "44"d$%%d&'!t(T!$)!T)!*"D+@#-$-$04%0p%1%1%42,&2h&D3&3&T4$'4`'5'd6($7P(d8($9(d:P);)<*$>X*d?*@+dA+$B,Bd,$D-D.TE/F1TG1H02It2J24L3L@4M4TN5N5O<6O8O08PD84P`8DPt8P8TQ8Q9T9T9U94U$:dVt:TW:DX:tYL;Z;[;]<<4^<d_<`,=dap=b=c=Tc0>cd>c>d>dd ?d@$e A4e AfA$gADgDBgBDhBThBhChCjCDl DnpDoDqEDs`EtEvFwDFDyF{F|4Gd~G$G$H4hHDII@JTJdJĈJ$$Kĉ|K4Kt4LLLdLzRx $6` FJ w?;*3$"D HX BIE B(A0A8B@8A0A(B BBBxB@(X CADA u AAA D" ,$BHD  ABA 8CA T @hA[PtXF`FhFpFxFUPLXG`DhDpbPDACPH0BEE E(D0D8D@W 8A0A(B BBBB OC6@l0̐BKB A(J0K6 0D(A BBBJ B 0G(A BBBH w 0D(A BBBF BV8BBA D(G0(A ABBB90d,C @\:AI d AA dC (|`ZBDD EGB C! ]AB$VADA MAA[C!  0DAB((AAB  CAA TCd 0l AAG t AAA ADA|PANLF0?AAG h AAA ADAHĖBBB B(D0A8FP 8D0A(B BBBA TBJPt8Hd+BBB L(D0D8D 8D0A(B BBBA ,HBHD [ ABA C H BBB B(A0J8G@b 8A0A(B BBBA lBY@0`AD QEB" ^C(AEJ @ DAA $(BIA D(D@,B@^ (D ABBA $L`DADI sAAtB $pAAAG uAAB  ADA@xBBB A(A0Dp{ 0D(A BBBA mBfpT8pBBE E(K0D8D@ 8D0A(B BBBE DHNPOHA@[B@l 4uADG w GAE Q AAE 0*H[ ȟTDt B Y4 \Ad A u8T HBBD A(N09 (A ABBJ  bA0( mBAA i ABA ( ]AKD B AAA  A , BAA  ABA L @  h DAAG0 @F0c AAA 0 BBB I(G0A8G`8 @` 8D0A(B BBBA H BBB E(K0D8G@q 8D0A(B BBBA h B@0 TBEB B(H0D8D8 lBI 8A0A(B BBBA 0 BJA TP-  DABA , GP0H DBBB I(G0A8G`8| H` 8D0A(B BBBA @ dBKE A(D0D`E 0A(A BBBA  >J`8 @BKD D(DP (D ABBA X JsP8t @BKD D(DP (D ABBA  JsP0 pBBB I(G0A8G`8K` 8D0A(B BBBA P<BBE F(A0DnZFFFFFFUDM{ 0D(A BBBA mDDDb$EAAG yAAKN ,$BAA 4 ABE HԣBHD D0$lMB0d  DABA A\9AMA A ( AAG r AAA M A DAE 0LTAD A @P<%BIB D(D0DP 0D(A BBBA DMlP0(BBB I(G0A8G`8\M` 8D0A(B BBBA ,$BKD D0~ DABTO/0,pBKD D0~ DABjO/0,УBBI D(D0D@0MO@ 0D(A BBBA 0 BJA L0  DABA TO?0Hp BDB B(A0N8Dpt 8D0A(B BBBB OCpHpBDB B(A0N8Dpt 8D0A(B BBBA (cOCp8Ht:BDA A(Q` (D ABBA JOj`@̨BDB A(A0Q@A 0D(A BBBA TOC@@(BDB A(A0Q@A 0D(A BBBA H3OC@,hBKD g DBA &O 0BJA L0  DABA N?0x+D b A 0 BJA L0  DABA TN?08p6BDA A(Q` (D ABBA Nj`H$BDB B(A0N8Dpt 8D0A(B BBBA NCpH4خBDB B(A0N8Dpt 8D0A(B BBBA |Nhp@BDB A(A0QpG 0A(A BBBA NpL.BBB B(A0D8NZ 8D0A(B BBBF TNA0tBJA L0  DABA O?0Hx+BDB B(A0N8Dp 8D0A(B BBBF OpD05BKA A(TxVRxApV (D ABBA xOp  AO0F AA 4P0  tAO0J AA O0 ` AO0F AA 0O0(H AGL@L AAA tO@  tAO0J AA mO0 D AO0F AA MO0  tAO0J AA (O0(@ AGL@L AAA lN@ ( AO0F AA N00| BJA L0  DABA vN?00 BJA L0  DABA DeN?00`\BJA L0  DABA TN?08:BDA A(Q` (D ABBA ;Nj`0BJA L0  DABA <UN?08X$:BDA A(Q` (D ABBA Aa A Z"M "tAJ o AA P"BBB G(D0 (D BBBG M (A EBBA 0<#pBJA L0  DABA p#gL?0X#BIB B(A0J8KcRAx 8D0A(B BBBA #.LH$DBDB B(A0N8Dpt 8D0A(B BBBA T$ILCpHt$BDB B(A0N8Dpt 8D0A(B BBBA $ Lhp8$:BDA A(Q` (D ABBA %,Lj`88%t:BDA A(Q` (D ABBA t%>Lj`(%\ACQP AAA %`LP8%8:BDA A(Q` (D ABBA &Lj`8,& :BDA A(Q` (D ABBA h&%Lj`H&BBB B(D0D8NP 8D0A(B BBBA &'LLPH&,BDB B(A0N8Dpt 8D0A(B BBBA <'Lhp(\'0AGL@e DAA '#L @0'BJA L0  DABA 'K?00'BJA L0  DABA $(K?00@(ܿ~BDK D0  DABA t(K&0L( BAA O ABE W DBA A GBE AGB ({K  AAB()]ADK B AAA 0)4K H)$\)SAGL@|AA)J@<)BEB D(A0G@0D(A BBB)J=@H)PBBB B(A0A8GQ 8D0A(B BBBA H*J[Xh*BDB A(N0D@ 0D(A BBBI F 0G(A BBBA *tJ!@(*fADD0{ DAA $+BBA K(G@,8+!JX@N (D ABBA $h+/AKD XAA+ +$A^+ +QAu A L+ BND A(JZIAAOG(A ABB@,qI\,P>oNHt,xBBB B(A0A8G` 8D0A(B BBBA ,Ic`,,(Ac A A-I(-(Ac A AH-H\-p-H0-%BMA T0  DABA -H 0(-AJT0u AAA .SH0(.AJT0u AAA D.*H00\.@%BMA T0  DABA .G 00. %BMA T0  DABA .G 00.%BMA T0  DABA 0/sG 00L/%BMA T0  DABA /0G 00/ $BMA T0  DABA /F 00/!$BMA T0  DABA  0F 00<0"%BMA T0  DABA p0gF 0(0`#AJT0k AAA 0,F 080#qBKA A(T (D ABBA  1E((1%)Ag@1E A E \1%6A` A S|1E1%6A` A S1E1(%6A` A S1WE14%+Ac A A2*E$,20%_AJG0GDAT2D&0$l2P%_AJG0GDA2D&002@BHA G0I  LABB $2D0D  CABA 83tBEE G(D (A ABBD D3iD)D`3BKB J(H0D 0D(A BBBA 3.D-X3%BIB B(A0J8K_RA 8D0A(B BBBF $4C$D4#^AAA XAAl4$D4 $BFB K(D0D# 0D(A BBBA 4C 4d%+Ac A A5C5`%AJ045BBB B(K0D8G8h5jC 8D0A(B BBBA 45$EHD D(B0c(A ABB5G0$54%kAID0WDA 6G086d% $L6`%]AHB OAAt6% 86DBKA J(KP$ (D ABBA 6G P06<%BJA TP:  DABA 7FP007&BJA TP:  DABA d7FP07(BJA TP2  DABA 74GP07)BJA TP:  DABA 8iGP0 8*BJA TP:  DABA T8GP0p8l,BJA TP:  DABA 8GP08-BJA TP6  DABA 8HP09/BJA TP2  DABA D9]HP(`90AJT0 DAA 9H00981BJA TP2  DABA 9eHP092BJA TP2  DABA (:HP0D:4BJA TP:  DABA x:HP0:h5BJA TP:  DABA :IP0:6BJA TP:  DABA ;SIP04;H8BJA TP:  DABA h;IP;9KADD0 ;I!0D DAA H;9BEB B(A0E8G` 8D0A(B BBBA <I`04<xBHA G0I  LABE $h<I0D  CABA 0<BBB B(A0E8JP8<uI9P+ 8D0A(B BBBA 0=:RBJA T@  DABA 4=>M@0P=;PBJA T@   DABA =yM@0==SAN vI$>M D CA D>=SAN vId>M D CA 8>=BBA A(A0` (D ABBA >xM30>@>hAL A Y>oM$?x>9AAGjDATAJ?@>AJ$?H>/AAH [DA?@@gM4@TMSBDD  ABB AABPJJ+A o`  x`f(= oox(oo&on6FVfvƀր&6FVfvƁց&6FVfvƂւ&6FVfvƃփ&6FVfvƄք&6FVfvƅօ&6FVfvƆֆ&6FVfvƇև&6FVfvƈֈ&6FVfvƉ։&6FVfvƊ֊&6FVfvƋ֋&6FVfv $)27<E))KKKKKKKQ)KKUKKKKKKKKKK [$)27<EpJbc kc tXLI}8>W;@;P:`E4G@3B`:E38@I<`A %`bQi`q`r`}` ~~`P@P,``# c2P `9pDh8`xKy3z@S |[ dp&y)Ђ@.#@ 0Pl`Pmm`n@npop pq`p  0e@)e6fB s`G uV@c1 q fs u w`Pp 3 p6 -`GhE Q*@ 0 @`= ``= 0F 5#@48K3`S@dp0A  j'@&П%@%p$`#`"P"! #!W@86`p@.`  -6 ,B`@G@VPqP0`.X*@@`@  <:'j7H6s`E H Wp AP$7`P 2)< E E  +#D<_Wyq @ @ %; 0TW4`:GIB;3F88C@@IA`$@"] Z!^a a P; P\%4P:G3@@4GB;:C`d>@@<PW_decimal.cpython-313-x86_64-linux-gnu.so-3.13.5-1.el9.x86_64.debugR7zXZִF!t/M]?Eh=ڊ2Ng)P>br" O`Q"ɵ.~PW恬 ֜$YJP)uE.F1@ģ|79$NiY1A$MuCTLZekx@t$*ǁ ]}&2vgR=0Eǣy&p;f*V,8')` [G횷-/MW SGE|:9W!4G5ÔVދ㝪xhx02fֈo4 æz1Pfq|ڨj} /#D՛r9y97 qS>=n5LG?%QkG8(I@=T[N#/C`SgN\%;Etn%/D@B8H[0 ۷Q`hŖH0=pX;5D R/["ȀUP ,QE\J^]S0ERo7?'w#K<_vsDy=#resM"YꊋܢJ f6MJEyY^2XK{T]\w4vQYu(Ļn+(3@V6c ( XMq 6 w qFUw aBOPeWbswIFг6O%N_߄Zg3~]Ѽuc:ӆ9),21nW7 A`$u@)(&ZJy,PX铒 WK UOƒ7V]^C9Ш}X*XږsU~ P n=qF=J踜GsH"փ9U@w*sC=B*>b.iKJFt3׃-+}o c] CP1Ly~v0~eɁP\VClzs!0 OQM=LgKͅkQt0Mlᙋsu^hFJZE=!= W4TVȖu3JhdWMDWd=fOʃP_|av6=yn-F#!K0C `}_H"1j'.u|;2#5.+P+?)[[BD=U1Pʆ@|I(;X 1ȡ>Q?u=:SMVFu3 '0'#dcY&26m v} X \MV%lVc1G,|`cqί H1:s@pUB<<)JW^=][2DȚK` flo_qZL.)C륅9`64ۂ៳nog-E7WyREǟIJ[V=둲,,˱{Ѩs3 a' V}PtTu'0C9 wj p9  .i% ݴ<+ka)_smu[o``Ck 6Yu;h$ר;AEF瓿)J( *t Ee8ˠ 텭W<2*eܶ?90eڅ{ee 0=cȄ#wUFRȜSQƥmZ_5ԸB $\ScK( UoƆy?[RR%X-ds ͑1kxfzRȬ+܍"-=ru ATӝA49d0>g#]L3m bZ!\mUX5M՛,_O{Hǟ1~z.1KA{By*zKSz^ yuKg$ZDF Z6BtYaMG]dMJh<RD8eU/IZbb=/a{Rr:^Mɘt5(X/WDX]'SY_kS`30ɣlo& hClĢlT-*x-Pu'$#3"1;b7Io7hr$L$z+-e<[Ԩbo1n܇R)S 8pr,}'OD=BJ3gFm9ny@|Vk.1]lgO~aUb&`0)tbErY:-w窧Q$C\y`0pѕ=o+P:*[JU/T4y唟!;gp (d=8~*Nw1|)'2OAVOUCp/1ߵS(r4S#{hFR-K3p&k:I?c.oi;mX]l'=%xnycLjѮ\1SA$w\,\Ԥn%^Àp-JYAԧεNj9mfLy3rfN42 ;u[ }܆!?em+jP1-jHLPn9$3H<嚀^#IqtqvnsLP%uji*vן0