ELF>@@8 @bbpppm"m"pp000,-888$$Ptd   ||QtdRtd000GNU_͸*˶^n!bG~x\0} "+qnULRr7H5cZwJ :a~oQ.jCP>D](<T0V;(_Kt1"&, 4eF"O<U p__gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyInit__decimalPyMem_MallocPyMem_ReallocPyMem_FreePyLong_TypePyFloat_TypePyBaseObject_TypePyType_ReadyPyUnicode_FromStringPyDict_SetItemStringPyImport_ImportModulePyObject_GetAttrStringPyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectRefPyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_NewPyTuple_PackPyExc_TypeErrorPyExc_ZeroDivisionErrorPyObject_CallObjectPyContextVar_New_Py_TrueStructPyLong_FromSsize_tPyModule_AddObjectPyUnicode_InternFromStringPyModule_AddStringConstant_Py_DeallocPyModule_AddIntConstantstrcmpPyExc_RuntimeErrorPyErr_Format_PyObject_New_Py_NoneStructPyArg_ParseTupleAndKeywordsPyLong_AsSsize_tPyUnicode_ComparePyErr_SetStringPyList_SizePyList_GetItemPyErr_OccurredPyExc_ValueErrorPyContextVar_GetPyType_IsSubtypePyContextVar_Set_Py_ascii_whitespace_PyUnicode_ToDecimalDigit_PyUnicode_IsWhitespacePyErr_NoMemoryPyList_NewPyErr_SetObjectPyList_AppendPyFloat_AsDoublePyComplex_FromDoublesPyFloat_FromStringPyUnicode_NewPyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyTuple_TypePyDict_SizePyDict_GetItemWithErrorPyObject_IsTruePyExc_KeyError_Py_NotImplementedStructPyComplex_TypePyObject_IsInstancePyComplex_AsCComplexPyFloat_FromDouble_Py_FalseStructPyBool_FromLongPy_BuildValuePyUnicode_FromFormatPyObject_FreePyArg_ParseTuplePyErr_ClearPyLong_FromLongPyObject_GenericSetAttrPyExc_AttributeError_Py_HashPointerPyObject_CallFunctionObjArgsPyList_AsTuplePyTuple_SizePyLong_AsLongsnprintfstrlen_PyLong_FromDigitsPyExc_OverflowErrorPyUnicode_AsUTF8AndSizePyUnicode_DecodeUTF8PyObject_CallOneArgPyErr_ExceptionMatches_PyImport_GetModuleAttrStringPyUnicode_AsUTF8StringmbstowcsPyUnicode_FromWideCharPyLong_FromUnsignedLong_PyLong_GCDPyDict_NewPyDict_SetItemPyLong_FromSize_tPyObject_HashNotImplementedPyType_GenericNewstderrfprintffwritefputcabortraise__ctype_b_loc__errno_locationstrtollmemsetlocaleconvmemmove__ctype_tolower_locputsfreecallocreallocmalloclog10memcpylibc.so.6GLIBC_2.3GLIBC_2.14GLIBC_2.2.5/opt/alt/python312/lib64:/opt/alt/openssl11/lib64:/opt/alt/sqlite/usr/lib64Xii blui w0`8 @@` h          H@ 0@P` h ))))0)8P)Xp)x/ ))3 0@P`)h))))) )(@)H`)h)ե9@ EJOX@^H@P XE`JhOpXxbkt}(0 @`  p   /(8@@HpX`hx@@0@ȣã ң(8 @ޣHX`hx`@@ ``"@ )(08@4H`X`Khx;F CKTp `(@8@iHX`shx @P )) (8@H)X`hx@ ɤФ  ڤ@` (8@HPX`hx@  P@ & 2(8@@7HX`Fh@x S@apo} (P8@H X`hPx@å `Х@ץpݥpZ (8`@H`h W p@/  (8 @HX``h0x@ȣP ң@ޣ @@ (`8@ Hp X`h x`K ;F0@CT `(p\8@sHX``hpx  ɤڤ@ (8@@H0X`hpxФ0`7 @@P  (8@@HX``&hx2 7  F`a`o $` }(p%8`@HX`åh&xP  Х@ ץ(8@,HX`Jh!x_(S(! `(@jHP(`sh(}#P)p@O@ P(008p@HZN (HP @TJ(J0T8XPEXT`pXx TKOU YX U`Y  ((`ph@UpOܧۦpۦۦۦۦۦۦY̧ۦӦ (@ H`(h B:ۦӦYQph (@H`ḩħܧԧXp)p`J (3XpLJY(8h3x2 H8P@X h0GM <ܧ̧ ܧ(08@H PX`h'px̧( 0 8@HPX `$h%p)x*;?BCHJVW_admvxyx&G0GpG8'. .6^S (08@HP X ` hpx!"#(+,-. /(00182@3H4P5X7`8h9p:x<=>@ADEFGIKLMNOPQRTUX Y(Z0[8\@]H`PbXc`ehfpgxhijklnopqrstuwxyz{|}~ HHoHtH5k%k@%kh%kh%kh%kh%kh%kh%kh%khp%kh`%kh P%kh @%kh 0%kh %zkh %rkh%jkh%bkh%Zkh%Rkh%Jkh%Bkh%:kh%2kh%*khp%"kh`%khP%kh@% kh0%kh %jh%jh%jh%jh %jh!%jh"%jh#%jh$%jh%%jh&%jh'p%jh(`%jh)P%jh*@%jh+0%jh, %zjh-%rjh.%jjh/%bjh0%Zjh1%Rjh2%Jjh3%Bjh4%:jh5%2jh6%*jh7p%"jh8`%jh9P%jh:@% jh;0%jh< %ih=%ih>%ih?%ih@%ihA%ihB%ihC%ihD%ihE%ihF%ihGp%ihH`%ihIP%ihJ@%ihK0%ihL %zihM%rihN%jihO%bihP%ZihQ%RihR%JihS%BihT%:ihU%2ihV%*ihWp%"ihX`%ihYP%ihZ@% ih[0%ih\ %hh]%hh^%hh_%hh`%hhaHxHHuHE1H-Ht~HE1H xm1E1E1HHELHtHx HHIMtIx HILIMtIx HIH=THtH1H-Cx HHH=HtH1Hڍx HHH=rHtHE1L`x HH}H=PHtHE1L>x HH]H=HtHE1L x HH=H=HtHE1Lҍx HHMtIExHIEE18!HcSLrEH E1Ix HIt6H-όHt4HEE1L%x3E1E1%HULHjE1H=E11HL5LH:Y}ysi_LRME1E1H-HHE1H5ҋE1:LH_HHHHx HHtH41$Hx HHt1H A<L8A<E1uE~wdA,$IHI9A,_t؃HvcL$P 0L$IAD$H2cL$ 0L$IAD$`C< A<L$aL$d8A$ IDACA?L$(L$oA$ I1[#HbH5-H8LI$HI$LeD$D$HxH1[þHLd$HHt*@ tO@t\HE(HrXITHTHHsgH|$HH[]A\1HHE8HLHHE8u7HtA$tATfTH1I H HH9sA$ATTlHP8HP8HEaH55#H81jHxLt$ Ht$ ;HxHHuH1Ht$ Ht$Hg7H`H5\*H8xH`H5.,H8H[HHD$qHD$L_wI$x HI$t4IEzHIElL&_HOL ‰tH5ltH_H9 ILUE,LL$ELLsL$K LA@ H<$LHT$(= LL$AIx HIiHx HHbAbAHo0JcHH{vH5^)H{H5_H5HJH5!H}HLHH='H$^H $IHxHHuHMHEHH$1H5 H߉T$, HtoLHHD$H=HL$HHxHHuHHt3H<$OH$HHxHHuHIxHIuL1Hh[]A\A]A^A_LHLH=MHHAD$_AO,HLH=gHHuAD$RHSf.Szt{ff.zXuVIHMAO,LHH=uHIExHIEuLHH\L$$$L$Ha1Hj\I9L$LIH=~HLHD$H4$HSLLL$LD$,HFMQLL$HD$1LHFLT$HD$LL$LT$IA Hx%HHuHLT$LL$LT$LL$H<$LT$LL$$|$,LL$LT$uDH[I9LL9LL$Hx HHtQH<$HX[H59'L $H8L $IaHITL1GH$륾L;LHD t$(LAHZAAIcAAEEAE1E@EAEAAEAD$tt$(Lj1_HsZMPHZH5$H8MHHHHHHH HEx HHEt'I$]HI$OLxBHkLAA$+H}A$L9'EtELxIHf@0H@HHK@HUIt$fowH@I}LD$@IE@ I$xHI$2HExHHE)t$Ha"HL[]A\A]I$xHI$uLqHExHHEuHWE1HJID$ttLHLIHtH}L9LHEtHHHLHHI$x HI$t0I*H-WEtEH-WEtÉELLH|IEHIELULHIx HIt4IEHIELsHLIx HItPIEx HIEtHHE.HHE HLHD$HD$LLHHD$tHD$LbHU+HExHHEuH61I$x HI$tIExHIEuLLLHHExHHEuH1uI$x HI$tIExHIEuLLL\A$+H}A$L9'EtELIHf@0H@HHK@HUIt$foH@I}LD$@IE@dI$xHI$2HExHHE)t$H|"HL[]A\A]I$xHI$uLHExHHEuHrE1HeAID$ttLHLIHtH}L9LHEtHHHL贼HHI$x HI$t0I*H-SEtEH-SEtÉELLHIEHIELpH1HSHHHEH8HHH$1MHHD$HD$HHuHhIEx HIEtFI$x HI$t>L@CLLFHL|LrLhTHEx HHEtB1I$x HI$t3IExHIEuLHHLHExHHEuH1SHHExHHEuH1HeHExHHEuH1HvI$x HI$t#1HExHHEuH>L4I$x HI$t'IEHIEwLjLI$x HI$t'IE HIE Lw LI$x HI$tNIE!HIE!Lx!HE|!HHEn!HQa!LDHEx HHEt'I$;"HI$-"L "HHEx HHEt'I$"HI$"L"Hω,#HO#Hx HHt#1#I$xHI$uLxHnHx HHt#1{$I$xHI$uL;H1I$x HI$tNIEr%HIEd%LW%HEK%HHE=%H0%LI$x HI$t'IE.&HIE &L&LI$x HI$tNIEI'HIE;'LN.'HE"'HHE'H''LHHD$ HD$@(LHD$HD$(Ix HItpIEN(HIE@(L3(Ix HItCIEx HIEt;HE(HHE'Ho'LbLXLNHEHHEH*H}LuHEHHEHHFHEx HHEtM]HHT$HL\HD$HHHHHILh鎿HHHHCH)HHHHI$x HI$t#1'HExHHEuHLI$x HI$t^Ix HItXIE^(HIEP(LC(HE7(HHE)(Ha(LTLJL@$*IE)HIE)L)L R)IEx HIEtFHEx HHEt>I$)HI$)L)H~)LHH(HJt))a*HJtL*HJt**-++7,HnJt,,,--I$x HI$t#1l.HExHHEuHLI$x HI$t#1.HExHHEuHLI$x HI$t#1./HExHHEuHJL@I$x HI$tNIE%0HIE0L 0HE/HHE/H/LI$x HI$t#1U0HExHHEuHLI$x HI$tNIEL1HIE>1La11HE%1HHE1H: 1L-I$x HI$tNIE2HIE2L1HE1HHE1H1LI$x HI$tNIE2HIE2L2HE2HHE2Hf2LYI$x HI$tNIE3HIE3L#3HEw3HHEi3H\3LI$x HI$tNIEd4HIEV4LI4HE=4HHE/4H"4LI$x HI$tNIE*5HIE5LO5HE5HHE4H(4LHEx HHEt#1Z5I$xHI$uLHI$x HI$t'IEM6HIE?6L26LI$x HI$t#16HExHHEuHdLZHEx HHEt#1)7I$xHI$uL%HI$x HI$tNIE 8HIE8L8HE7HHE7H7L먉HÉzI$x HI$t#1;8HExHHEuHgL]H(1[]LHD$EHD$IEx HIEt5I$x HI$tD1I$xHI$uLLLHD$HD$鼼LHt$Ht$HY)HlHt$Ht$HԽ颽I$x HI$t#1-8HExHHEuHIL?I$x HI$tPH|$0Hx HHtEHl$89I$x HI$t0IEx HIEt(Lp9LLLI$x HI$t'IE:HIE{:Ln:LuI$x HI$tNIE;HIE;L?;HEs;HHEe;HX;L I$x HI$tNIE`<HIER<LE<HE9<HHE+<H<LI$x HI$tNIE&=HIE=Lk =HE<HHE<HD<L7먉u=I$x HI$tNIE?HIE>L>HE>HHE>H>LI$x HI$tNIE?HIE?L?HE?HHE?Hi?L\I$x HI$t#1?HExHHEuH'LI$x HI$tNIE@HIE@L@HE@HHE@H@L1AI$x HI$t#1AHExHHEuHrLhHEx HHEt#1BI$xHI$uL3H)21]B[]A\H>H5 H8LB1BHHD$HD$BHxHHuH1ICHxHHuHYELGEL-EtuLEH9>H5b H8LDHx HHt1FHHHT$HT$HH=H5/ H871J HMHZMH=H57 H8H7MHzL_LHjLMM NH`pNHSeOOOH8*PKPDPHPHRHSHTHUHVHWHXH<H5W H8YHXYMYYYZLZZHxHHuHMX1ZHxHHuH)41ZH1[]H [H_ϸŸHC鳸H;H5 H8[H [WH;H5 H8BHHE4H{'HnHEx HHEt'I$HI$L5H(H[r]``H]Hi`bHbH:H5 H81!cHdHfHeHEx HHEtOI$eHI$eLUeHA:H5H8eH-dH HEgH 3fHfHEx HHEtBI$ gHI$fLfH9H5pH8fHHrhH^gHwgHEx HHEtBI$:hHI$,hL>hH*9H5H8shHH iH!iHEx HHEtOI$niHI$`iLSiH8H5sH88iH(hHHjHzLjHEx HHEtOI$jHI$jLA~jH-8H5H8vcjHSiH HkHwkHEx HHEtOI$kHI$kLkH7H5iH8kH~jHL}lI$x HI$t=HEx.HHEu$HLI$xHI$uL01lL!HkH7H5H8LHxHHuHHmH}mHlH6H5kH8mHEx HHEt'I$mHI$mLjmH]HSmY@nH6vH1E1,$vH1E1 vHE11E1E1uHE1vHvHE1uH1[HHt$OHt$vf@0H@HH@Ml$HT$fo^H@L@ID$@GLw1LE1It$ HUII$xHI$uLMLHIHpHH( IHHM1I$xHI$uLTHH[]A\A]A^H<I$x HI$t 0L1Mt$ HI|$ LuII$)H1HHVHHxHHuHI$xHI$uLHtXHLMyWHHHEMHMHH1JMM1VIIExHIEuLM IHHL1nHHExHHEuHIEkHIE]LM(=HLUUIIExHIEuLhMHH#UIHExHHEuH6HMLL1HIELHEHHEH̯HEYHHHEd1gMIHxPHHtTHExaHHEwHxjHH;H^.KFHEy9H:HEy$H.H5H8b1sI$x HI$tRHExHHEuH߿I$xHI$uLÿL蹿`sH謿rL蟿H-H5OH8׿1tLxotI$x HI$tEHExHHEuHGI$xHI$uL+H!sLH-H5H8L1NuL)u uH,tHtI$xHI$uL课H襾WtH1[HHt$苾Ht$NuH1[HHt$lHt$ouH,uHEuHHEuH4ru[<u1HiHH=H5H8t#HHH  #HHHDH HLPHPH=R1$t$P$t$X$t$`$t$h$t$p$t$x$L$L$HL$xH$Ht$p(HpHuH+8H0\1H5\H;H H=`\D^H3 [H+=H[1H5\H;謾H H=X\H3 v111ÿ鮻HXLI(m\HGH\HGH"HG H HG(HXLI(?\HGHdWHGH"HG H HG(ÍVHw^uTH@N҃HcHHH)HPHHH!HH HHH(ËGËGËG,1ww, w#wt w %MHXLI(Q[Hc HGH\[HGH"HG H HG(HFH9sHFH7HH@HH9HNHsH?HEHc L9 HT$H8H[]A\A]A^A_A Io钺E1H鿸H9t,I#NJL9H0IWH).HL-Lttv$t3C1;vWxCx/xxxwwLt$`HD$D$€HD$QZH޹ H$H$Ƅ$>f$+}Lt$`HD$HρLL}HD$LaLL|$Xx`HD$ hHD$HD$L#LA[L[]A\A]A^A_AZLHL[]A\A]A^A_AUATIUHSHH8ILЧHLLH?AtHھHg#H8[]A\A]H1҅HD$HHHD$HAUATIԺUHSHH8ILru 1HLLHgvH8[]A\A]AWAAVL5JAUE1ATAUHSHHT$ DDD$ t*K 1IcHWHx+D9}&HcA)HIIuHH9tEHE)H[]A\A]A^A_AWLIAVAUAATIUSHHtIfGXI\$nE1IfA$Es2K 1HcHWLLD$gx69}2HcLD$)IIIuI9tI^fWfHCD)H[]A\A]A^A_USHHH|$^Hl$Ht#HHH5V10HH[]%IHHٺ[H=ZV]邺SHHH|$H\$HtH褵HH[%6IH$H=VHH[!11HC(HH1:Il$(M9l$ ALkLs1fID$1AD$ EHD11~1UHSQH=HZHHu HHZ[]AUATIUHSHAPLo(HL}HC(Hu-Lk(HH1W1HKCA $Hk Hj#Z[]A\A]H1UHHSHQHHt18HGHtHS Hs(HH HC(HHk #Z[]UHSHHH(HL$D$|$uHC(Hk 1H9k H[] tH9锼OHSHC(HHH zPHLLHC  H$HLL$LL$oHM@LMH5FHC II9IMH9t H9HC(JTL*LKD HH|$X~FD$0H$HLL$賻HK(LL$rH|$0GFH$HH$HLL$+HK(LL$*H$HLL$ LL$@pH$HLL$&LL$H$HLL$LL$HL蹻DLd$HLLL9L|$@HLL}thMH|$@VE2 D$HH߉Ɓ ut$ xH|$#ED$@<H|$h ED$@HH豽6H|$8DD$% EL$H|$ DL$HL9BL99 L$I=HM(HS(1I}(LCBL$6HcIu(I'JH|HhH,DIM AUI9IMH9t "H9)D$2D$Me AEH.H;L H;LAH;LH;L?ID$HHDPIEH0M[D$PMHHgH1HHHH9]HHHHHHHHH9HHHHHHH9HHHHHHH9}HHHHHHH9iHHHHHHH9UHHHHHHH9AHHHHHHH9}HHHHLLL$cL$Ld$PfMHHLLD$P0fo%PH$D$XHD$xT$hDAEL$uSD$PuJH|$xHT$h1H|<wL$AD$PL$uL$LAL$MeJ1LL${|$PL$wH|$xAL$D$P]L$LfAL$GHE(Hs(L$HSI}(H.IIu(L$HJ,ID$ItDHH|Hj<ILHLL$AUIu(L$1AH;IH;IUH;I[H;IHH IT$H HJHIEHHH>HHHHHHH)!HHD$IEH;xIsH;_Ir&H;^IHH|H;[IHHiH;(IHHVLHLL$"AUIu(L$IIJlHxIIuZH;~Hr%H;H H;kHHHH;HHHHH;]HHH HH>1H;GHHItHFHuEIum1I9LL$LOLHL$L$LIMHL9tHHtHH H JHHHH9:땺H눸HuHlHcHZHQ1$HT$ H肳DL$t6HLL&DL$u#HHL[]A\A]A^A_鮶HLLDL$6t$H1[L]1A\A]A^A_H|$X=D$0-H|$0=%HT$HLL$ L\$˲EHM(L\$LL$ HT$HLT$(LL$ L\$XLT$(LL$ L\$LL$MNIHD$LD$LLHLLT$ L\$?A$xEnI\$LMI|$(L\$LT$ IHT$LLT$ L\$訲L\$LT$ HT$HLT$(LL$ L\$轱L\$LL$ LT$( HT$LLT$(LL$ L\$荱A$I|$(L\$LL$ LT$(L<tH|$8<s LL謴sL;uHLL\$8LT$0HT$(zHHD$HpIHH|$(H艹HT$(LT$0HL\$8HdpHT$(LT$0HL\$8HIHt$ HT$MHLL\$0LT$($L;H ;&HT$HHHLu(H]:L:HT$HXH[]A\A]A^A_IHt$ HT$M1LL\$0LT$(۸LT$(L\$0lIHt$ HT$1MLL\$0LT$(#LT$(L\$06LM:fL?:XLT$(L\$0HL\$ LT$:LT$L\$ H(HL$D$f|$HC(uH9HC ssH<$1ɺD L-LDD$LQDD$t;DAk…xeH<$HX[]A\A]A^A_RsE1L4$HmHLHULH)IFA$D A @H<$HX11[]A\A]A^A_NE1vE1nH;BHH H<$1HNgm GIF(H|$ HM~A~^AofHD$HD$Aonf\$Pd$(D$ ID$ID$l$8HHD$HH9H<$HXHھ[]A\A]A^A_E1H;7AsH;&AHH 11ÀwH|$h7T$@u L7HHD$H|$h7D$@HD$HD$L7HD$H;@҃H;@sH;{@҃ H$97D$`H|$#71Lp^Ll$H$LHLfo>1Ld$0H$D$$HHD$($foT>H$$HD$(Ƅ$莒LH5 L$H$H$H|A D$AH H0sH$6$H$5rt$1ɺL-A듺1LoHLl$$tFHT$MLLLHD$T$$ A7IwIO(H|u H|$MLHHMHHH$HlD$` $ t$$HT$LҭAH==LH$IHIHtLHD$0HH|$8HD$0L9}SLLl$ Ll$HHHHLHIU$Ld$(,uLNLVO,IGpLl$L"11L\$(HD$HD$ Hl$8N$HND%LHH&BIH(H(HL$D$[|$HC(u H3HC -HH(HL$D$|$HC(u H3HC rHL*cuHLLHHLHuHT$PHHHt$@uHLH胫uAH8 H11[1]A\A]A^A_EH$2tH$2ntH$2tH|$2rtH$2QtH|$23tH$({2ftLm2JtH8 Hߺ1[]A\A]A^A_8l1ɺ1HHT$H% yL2H;:oH;:rFH;:sNH;:LH;:s>H;:riH;:sqH;: H;: H;:sH;:s=H;:H;:H;]: H;z:H|$X1H$ 1L0IE11HHI+M2HD$ApHT$H4$ԬH4$HT$HIt[Lt$LHMD$uMLLHHA}w I}(t0AEu*Ld0D$ EHHpD$d11L+08vH$0vH|$0uH$/uL$LLLMtAMvH Hߺ1[]A\A]A^A_iH$/uH$/uLLLH)vHT$0LHHt$ rLL詧ruA $@H?HH []HA\A]A^A_iH<$ /tLL踧!uH|$x.tH|$.xDHRxH$.UxH$.xH$(.gxH5s.H;s CvH{(H$0L$Ƅ$0迤$0L$HC(u[H..HC uAHvH$.wLH躦wH$-wuHھL芦zLt$ L踉IOHED$DHH91HHHHcփIHH9|LEIA7HLL$LDL$ HLL$HHD$ pA7ILH$LLSILLHCLILLLLgL$DL$ IAuA]AHH$wH$,$uH$,HLLHl$PۤxLH軡tHLMH}(LH_LH蒡ZLH?G?IPH|$h ,xL+xHCH+HpH9HLHS H9t  tH9+HS(HHCxHH辡tHCHHX[]H;4Jy @H?LHXe{H$U+w{LG+M{HLLIؿHT$0HLHt$ m9{L$HLL t-MyH$*zH)#{HھL{zH;4mxH;3s,H;3SxHD$vyH|$xu*8z .xH|$[*)zH$H*$zH<$9*#zH$&*zL; r3EAQ}AF}L; 3EA 3}L; 2EA }L; 3EA } t8H9}HT$H} tcH9B|HT$HߞXHT$H萟}HD$ 1JHHwMA tB1IHv}HT$HE{H8[]A\A]A^A_H }Q}I|HT$ HJ HT$ HH< t1H9VLHF t#H9LLH詞L蜞`X[]A\A]A^A_H;L; 1EA\L; u1EA IL; 1EA6A$ H9HT$Lev tRH9HT$LHK4 1HHHwVA tK1IHvӁHT$L违顁HT$L譝H8[]A\A]A^A_阁J4I H9LH觜 t)H9ULH艜L; 0EAڃLH)"H8[]A\A]A^A_L; C0EA饃L; @0EA钃LHlLLHΰ~LLH軰黋HHH[]A\A]顰 UHUmH?H9u HȄTUH$H黒At`H$H$LH;EHEAW(I7H$%͏H$8%鷒AtH$I땀tH$MAwAuH|$%^H$%=H$x%H$e%H$R%ڑH$?%鹑H$pLD$8H$HHD$L QH$HLD$,HD$ Hl$0LLd$8D$ t0L$HL$HHHL$HHHL$HT$]]L$HL$HHH趒L$HHHL$HT$-]Hl$ L l$,u$MIo$ HLHl$0o$(H$8I󥈔$H$$$k1H]e[L]A\A]A^韜[L]A\A]A^߭A $ nHھHrHؾ1HH5Y,HH1H41HEHr#HpH9HLHU H9t E tH9/HU(HHE7LHJHELHqL¾қܓH#NJH91D$H;:,҃麒H;+r+H;+s3H;+҃ 闒H;+҃醒H;+҃ ukLl$PLLL膬tM陑La"HL HHƒH|$x,"H$"ǒH|$P "驒H;*҃ՑHH裚mH|$H!}H|$ !xH|$x!sH|$P!nH$!iH$}!dLL(;H;b*Ƀ HHr I<t1ۉ؃HHD$H;*ɃH\$HLHLL訙鲘 D$LLƁA ut$ 脙鎘H|$ 锘H|$8 yA E AE\t$lHT$H߁6H$c t$lHT$H߁\t$lHT$H߁@H$ H$ (HL$HT$aAE1HYaLH$H$HھHFH5rIE I9IMH9tAE tZH9I}(LD$LJ :H56IE I9IMH9tAE tuH9I}(LD$LN4HT$ LHL$8LD$HL$8LD$uHH[]A\A]A^A_HT$ LHL$8LD$LD$HL$8HT$ LLD$谔LD$uHT$ LLD$ϓLD$HT$ HHL[]A\A]A^A_MH5AIE I9IMH9tAE H9Lt$H9HT$ LUHT$ LHL$HL$hH5IE I9IMH9t AE tWH9|I}(LD$LJ QHT$ LHL$誓HL$hHT$ LHL$ƒHL$HT$ LHL$8LD$hLD$HL$8uaHT$ LHL$8LD$~LD$HL$8I9tJ82:HNIH#NJE1H9HAIH)HLH5H9w H(HL$D$|$HC(uHHC _W u H5gH9w CfE鈕E t`H9HT$ H萑ՕH|H雕H(HL$ D$ ~|$ HE(uHHE HT$ H~ LLD$$L3H|$XI>HL$/HD$/|$/ItMLLt$|$tH;p1HAH1\1UAAHL$LHHI#NJM\$IH,$BIcqD$IU111ɉL$H$H|$XD$0H$NH$H|$0H$6HH|$0LLHL|$HLT$XrHH%LWѕH|$XG鶕L¾L¾H9HMH9t8E tH9HHR HH4I $fHnfH:"HE USHU1HK2H5$&H;,H )H=x2蓊H3 聅SHn1H1H5%H;ׇH )H=S2>H3 衆,L\$(L9K 1HH HHL$ @HL$ IMHT$LHHL\$(H|$I.HL\$&Hl$H1HHHL\$LLH +HMML\$軖L\$HLHX[K3]A\A]A^A_%H 1HH HHL$ 苅HL$ MIHt$LHH]L\$(FL 1HLIHHD$H4$LHHHD$譆1HLLW.HT$H4$L脆HL$H1H|$H)HLHH|$HD$ɄHLL.t}HT$H4$L1HT$H|$1萄HHL-LtL   闗LLE1LHLʻHH9s1H H9麗HH9H頗雗AWMAVHIAUMATUSHhHt$HT$L9rdIwHHt$L!4Ht$H|$LLLD$XgHOT=LHJ HI@HIHD$HD$IJ,M)L(M9M9s{K HHt$MH 1MLHH tDKT=I<.H"HL$1HHT$Ht$MMHHHHu71KD-HHT$MH 1LHHuK}w H}(EuHu΀;w H{(du HVH|$153H|$1$3H[]A\A]A^A_AWWIAVIAUIATIUSLHxHT$@D$HD$p(HHD$8Hl$D$(HT$D$0THT$HLHILHLL豃|$w H|$8D$u HHx[]A\A]A^A_F?AWWIAVIAUIATIUSLHxHT$@D$HD$p((HHD$8Hl$D$(HT$D$0THT$HLHTILHLL|$w H|$8D$u HHx[]A\A]A^A_FHc>H8IHHIH AtL¾HH8+pHLHƿD$$H8H8IHHIH AtL¾HH8oHLHƿD$$輼H8AUIATIUHSHH8@6@tOL@tAEtH8HH[]A\A]goID$11HHHI+ $ޭ nIUIE(H|u@X0 H@uHL HLHHD$$H$H8HL[H]A\A]{nH8[]A\A]AWWAVAUATULSHhD$8(HD$`D$00HD$XD$Hu8HHIAIt 1H;T$ uNDLuIHuEIEaHjHH;D$ AEu#IUIE(H|uHAfIUH|$0Hx4HL}DLt$HLl$XE1HD$HD$/HD$mHHL_HuHL$H;LD$/;k|$/HuvMHL$LLLHH $fJKDIHtL<$IL9$$rHuIIt&|$0w H|$X_D$0u/H|$0M"|$ tH;;1HMIHhL[]A\A]A^A_AWIAVH5AUATUSH8L$Ld$pLL$ H9s LlDHHH*HD$ed(H*^ Yf/ wHL,II9tH#hI1MuLH8L[]A\A]A^A_lH9t CIHH5:IG I9IMH9uHIG(IHhA tH9~LLWh LL iuI(HL$HH\HD$Hu)II(HHD$HHsHKL9|\H5IG H9HMH9t A t!H9I5LLHL$(gHL$(LLHL$(chHL$(uIG(HT$HH]HKL9|\H5IG H9HMH9t A t!H9I5LLHL$(@gHL$(LLHL$(gHL$(uIG(HT$HHHthE1I_LIGAD D$EohHH9HMHIG H9tA tH9~LfLhgHt$ LLiH8L[]A\A]A^A_%1AUATUHSHHFLfLnHNtXvvr<H*LL t21LLHOy<w~M I uv*1<w^L LHH9HLHNgmH9HOx61HT$ H5H߉D$ hD$ AtHHhHHhH[]A\A]AW1AVAUATIUHSHHT$ t%؃HFEAHuHVHF(HTHE1HEL}HT$ H|$Lu(H5HD$ HE L|$(HD$0؃Lt$8@D$1HD$uItIt 11It#PIF1H#NJIv1HHHH#NJH1HHI6HHH׃HEu-4Z111A%11A1111 1HEE1ID$LE,$A\$IT$It$HH[]A\A]A^A_1E1MI<E1LMLILIH9H#NJ1ML9MKtMtHL$pHt$0ISHLD$ HHLHH^HW1H5.H;6\H )H=^H3 [Y1L$H1L$IJHD$ H1HT$1L|$HT$Lt$LLt$ HL$(L|$(L1LvJDIHLH)HI1HHB(HHH#NJH9@ t Hv8uHI#NJHH9s"HtH 1HL9@u1H HHAVIIII#NJAU1E1ATUHv8uSHL9tfLH$HHLHHH?IH IH%M!ILIIILIHHHHIL!HM)I H[L]A\A]A^HuHH)HIH$ HHH$HuH9Hu$H)HbHu$LH)IIIXH9sH;LIIMuH91HLIIMH9uJD(FHuRH)HjHLIIH9M>zMlMlM| H9sMH\gHHH9aHHHH$HH94Hu-LH)IIIHu-LHIH)ILIIMuH9pLIIMuH9HLIIH9MHH9M1DL?t H$1H\HQHuHH)MD0(AWHL=v$AVIAUATIUSHHcIHH(H,HuHlH HD$Ht4HCHu+HHlL=iMLFH >>H'lHFHL$DHLHL$u1DHLхtE1LSM9sHKDK4HKHuHHIH)H$4LHH$H$HT$H$H9sM4ăH`H`HuoHL)}<H=L9 =Hb<<Ht=Hl>=Hu;L)I;H5>L9,>H=>L9sH <L9sHx;H?3?H>HH)MD0l?Hu%H)I>CHu%HH)IIH$ BH9sHCHIH$MuH9AHGH9GHBFHHLIH$H$HT$H$H9HMMF|HHLH)IIH$@H@HHIH$H9-HMnEHMlBHDDMlCNl*&CHGLIH$H9GMDGL1GLIH$MLH94@>HuLHIH)H$I>H9pH=jH9uH=oH;zH=tH9H=yH;H=~H9H=oH5v@H H>TH;Fu@F,A IL9$$AH{D(=H9l$XTHD$XH@H|$X;HHE1E1L5H|$XL=I>H9H=H;H= dH9H=IH;/H=.H9"$H=H;'9H=!HfH H:H;Bu@BIA L9AH{DA(1H[]A\A]A^A_HH5,@H|@H5 @H\@H5@H5@H,@H@H5@H5@H1H{&?@1H{='?eH9l$P&KA7-#n8Hu+HH{\&/H H5mH8^6_18HuHH{?&HУH5mH8!6HH5nH8 6멾=fDAU1H ATUHHHSHeHXH֢LL$LD$HD$H\$3$Ll$I9+H=1HT$ 5H|$ HHH|$HH=H\$Ll$HH{L%oL9u*D$ L9H9ktB>@L7uH{Hu2HLHI HHXH[]A\A]HIHLLHLH2HXH[]A\A]I}H5H9H\$H 1HD$ hHHLMMLHLLLL$UJH=0L50t$,H|$s>LL$t$LmL)HE HhH[]A\A]A^A_k!HtH5NH81HHHtH}DhqD$H1HHHtH}1,eHHU]>fHH HHHH HHH‹EHHHH HHWHH HH7HcPWHHc HHcHHH=iH95t&H=nH;5yH=sfH;5~H=xKH;5H=}0H;5H=H;5H=HzH H8H;pu@@HW#u"HKDHrDHYVDSDfHH)H9|@HIl@Hy\@HLH}H5JH81CH|$OH|$#ff.AVAUATUHSHDo,1HDH=uIt@HiH H;t&D#CtHsLCH H;u1Du(IHCH=t?HfDH H;t&D#CtHsL"OCH H;uHcU4HHuH=JLMLE H ЋE8HUAUATPEPP1gI$H xHI$BIUxHIU-CH[]A\A]A^f.SHHHHHtH{ t!1H[Ht$Ht$Ht׃HH5sPH8SHHHHHBH{t1H[HWH5PPH8SHHTHBHwCP1[HH57PH8g[fSHHHHHZBHH9¸HBH{A1tH[HH5OH8ATUSHtRHFIHHbFH5KHtRH5KHt0HHL[]A\HH5QH8[]A\[HL]A\x[HL]A\9AfG,H2ÐU1SHHH=6HT$$HHl$Ht)HExHHEHHHHߺ[]>HHkHfDAUAATLgULHSHXD$'?HHIHoU0oELHoM HT$ )T$@Dl$DLl$L)D$ )L$0yt$HGH|$MHٺ@1D$HD$lHHGHu3HAH|$ѨH'HcHX[]A\A]Ld$H&HLLH|$HD$H'HD$L&tH*H5.FH8{1HPH5QH8a1yf.AUH 'ATUHHHSHEH`HHD$D$ H\$H\$P1LL$LD$(ZYVHD$H9rH=1HT$ -H|$ HHH|$x HHFLl$H|$AoM)L$ AoU )T$0Ao]0)\$@H9H}HH9ELd$EI|$H9A$tA$H&HHaFf@0H@HHu@HL$ IT$fo$H@H{LD$@HC@6nHExHHEEI$xHI$uLVt$H|$PHXH[]A\A]fHOHEHLHHHLl$Ld$I|$H9DHID$tCLLH\IHCiƅxDH|$ )DLl$VHPHdH5uKH81HED1HPH5H5FK1H81ZHxH5%HH5J1H8EHxHHuH1Ll$:HD$HHbHDLAVAUATUSH_HHD$"uQH=ͥ1HT$x\Hl$HtqHExHHENH=IHL"Hc"uHHH5YOH8Y1MH~H5OH8<%9HHuf.HXLIfo~HGHHGHHG HHG(ff.@Hc HFH9r H71ÐSw$ff.vSwff.Hff.G$ff.HGff.HGff.G(ff.Hc HH9r Hw1Hc H9r Hw1@w w(1ff.@Rwf.AWAVI1AUATUHSH8HT$HL$HEHEE>A+1A-1AfDM4M+AFMMM)IPL9Hc IH9HHEIL99NH)HEWDQj<.AVDQIQE~1IsHk HKH0HcHH2If.HHc H9G5LXAFH([]A\A]A^A_I(HLD$HD$2HHD$5HL$Ht$H|$LSIIuHC(HL$LǺLT$J4LT$IIsC@A-MGHXHIx0HfAHHHT$HT$HHHIAH*H)H)DL EA+H)y H-L)A@HL$$L$1HމIxIH t H{"2IHEHA@nELAĀHgH߅ENaNLEH{LHIH^VHCHHHHH{HjHC(L1ɺLT$J4LT$IIsVDHInfinityELEHERA-IoHCHx EsNaNLEE%L,A%IIEHHHxSH{HLIHA@0H+KLH)H9MG+AHKpHHMG A+IoaNLDIcLDH9HLGHIGwIHHHB0Hd HH)I9HIxHS;\HHHB0AH]xEcHH)H9BHWx/e9LGHH3B0Ho#HH)I9\HIxHu@HHHB0AHƤ~HH)H9PH͕PMB LGHH*B0H@zZHH)I9\HЄK8IxHH)B0AHrN HH)H9H3"[3/#LGHH%B0HHH)I9H$ IxHH$B0AHvHHH)H96HLGHH!B0H THH)I95HIxHSZ/DH HH B0Hiʚ;AH)H9Haw̫LOHHB0HiH)I9HBzՔMAHHB0HiҀAH)I9!H4ׂCIxHHB0Hi@BAH)H9HLGHCxqZ| HHHB0HiҠH)I96HKY8m4IxHH B0Hi'AH)H9^HLGHS㥛 HHHB0HiH)I9HIxH(\(HHHB0AHHHH)H9HLGHHB0HHH)I9tz0A@I@A0IIIzIIITI&II6H𿀖1.HLA0HֈAVA.Iy.HDH1.LAH@zZH0HֈAA.I.HH1.HyIrN I0HֈAHA@B1.IHy0HֈA.HH1.HLI0HֈAWH1.H LAH0HֈAA.IHAʚ;1.IHy0HֈAH1.HyIvHI0HֈADQJH1.H LAH0HֈAH1.LAHd H0HֈAyH1.LAHo#H0HֈAH1.HyI]xEcI0HֈAgH1.HyIƤ~I0HֈAIiHHHH=B%`H=1USHHH9HMǿ0H&HBH1HHHHHAHC(HAfHCHk CHH[]@AUHATHUH1SHHHLo(HHuOIHC(Ht=HK HH u\AoMHAoUPLc eH[]A\A]Lk(H H1fHC1CMHLLc HVe@AUHIATHIUSH1HHHHo(Hu,HʉH@Ml$ ID$(H[]A\A]@fHUHHSHAPHH@~H@Z[]Ð DHAH9HLHG H9Aff.@HGHW(HTH;s:H;sqH;ʑH;HHHDPHGDH;H;ԑrzH;ۑsG1H;ÑH 5f.H;yH;| s1H;dHHHHPHHGÐf1H;GH fDH;qsgH;XsF1H;EH@1H;ϐHfD1H;ǐHn1H;HVH; HH@DAVAUATUHSHI?u HCHUH9 []A\A]A^@H)HHI?Lk}$Iw&E$HHcHIw2A$M @A$[]A\A]A^IvH{(Hs賃H?HCHS(HTH;ΏsDH;H;H;kmHHHDPHCH9Ef]H; H;H;s1H;oH HHHPHHCH9EH߾HCLHHHfHnfH:"ECMt.A $@bMttMA $[]A\A]A^H{( 1HHMtٸ!HtIRfDH;H;1H;}HfH{(=(@H;rWH; 1H;H1H;H1H;ύH s1H;H[1H;ڍHFH;׍HH3 V(H6[]A\A]A^hA$ff.AWAVAUIATSHHLwLgHFMIL9V(uHFI9|-H[A\A]A^A_HHII)M9HFL9~HH+HWIHG(H|AM M9}LH|$L)H|$S$LIHcLgHEAEH|$ @PHWAEHG(H|OOAEAE:HOHW(H|~$ HLD$(H)L\$ HHL$H|$0HLH|$7H|$L\$ LT$(t.HD$HMNHXL)M9u L9I HD$1LG1H8D$0<*LLHL\$3tL\$A11LL]VH)HL$H|$0LH|$wH|$L\$ LT$(jIEHH+T$HHZM9u H9*IEHHL$LHH)L\$HL\$L]kHD$HT$HLL$ L\$bEHM(LL$ L\$]HT$LLT$(LL$ L\$/A$I|$(LT$(LL$ L\$vHT$LLT$ L\$:L\$LT$ m*ff.ATMUHSHLHH[]A\ff.AWAVAUIATIUHSHX>LD$@d 2@W LzIUIH\$HI9]HkMMH@ Ir(Ms(H)H#NJHI&IH?HIHH%nII!MHD$HD$HT$L!LHLIIHT$H+Hv8uHHD$HIM)I#NJL!LL$XHHL$PHIfHHL HHH?H?I!IHH%mLII#NJIILIHD$HD$HT$HHv8uHHHHL!L)HH|$`HL$XI<HFI&HIHIIH?I?LH%QmM!IHD$HD$HT$LM<LIIHHT$IHv8uIHD$IH#NJLI!L)MHL$hLL$XHFIfHHQ HHH#NJHIH?I?L<0I!LH%lILHHHIHHHv8uHHHHH!HL)Ht$`H5cHT$hHU H9HMH9E bH9Lu(H HCH HD$XI9LHD$PIHHD$XIFHD$`IFHyHD$hIFHfHD$pIF HSLL$PIIHH9u3ILMIDIU(ID$(I#NJLu(HH"IH?HIHIH%1kM!MLIILIIIIMHv8u1HLHL)IFH#NJH!LIEHU @uIEID$HEH~EI|u=HCHI|HHtI|uHHuHaH]H9HMH9uaIDH;jssH;|j6H;_jH;JjLHHHDCHEHX[]A\A]A^A_f H96&IDH;:jrH;YjH;4jH;7j1H;jH LL$PHtH1LρHIpILLLL\$ LT$xkL\$ LT$H5`HU H9HMH9Lu(HEHU A4$A2u @uIBICHEH6vfDHhHHHCHHEfoD$PHHAfoL$`ANHt%HLL$PH¸ fAoAHH9uHHt HTPIEA4$A2uHU  @uIBICHEHuD1H;hH ;H;Ih3H;Lh 1H;0hH@H;qhcH;Th1H;=hHf1H;gHLDLIIIIMWIKLDHIIIHT$LfHD$DfDHD$PIHHD$XIFHfDI1H;fH1H;GgHHD$pDHMLMI@M|/fDH; gHH}HT$HL\$ LT$LT$L\$ HT$HHpLu(H]HLLL\$ LT$aLT$L\$ HT$HL\$ LT$%L\$ LT$HLD$LLH-zAEA$uIt$IL$(H|11HXH[]A\A]A^A_郖IBHL\$ LT$oIH!LT$L\$ IJMCIC(Ir(HHLL\$ LT$fLT$L\$ }wL\$ H}(LT$\L\$ LT$H\$HeLu(EH] HqHHH?HHL!L:vuIMIU(H|t'A3$HXH[]A\A]A^A_wHT$HXH[]A\A]A^A_$HLHL_LT$L\$ $IB(HD$IC(HD$ HvWH H9CHt$H|$ LD$HLL\$0LT$(6LT$(L\$0HIHHLL\$8LT$0HT$(xHHD$H規IHH|$(HT$(LT$0HL\$8HfHHoHT$(LT$0MHL\$8Ht$ LIHT$LT$(L\$0fHZLT$(L\$0ff.AWAVIAUATIUHSLHXH<$DAIT$(ID$H|=HG H2HhHE1HHHH9HHIHHHHHI9HHHHHHI9HHHHHHI9HHHHHHI9HHHHHHI9HHHHHHI9HIHHHHHI9rHIHHIML$ȃAAnD$IvIV(H|΃@t$AoEuIT$ID$(H|XH59-LL$DD$D$ DD$L$"IF(H|$ HM~A~FAoNHD$HD$AoVfD$PL$(D$ ID$ID$T$8HHD$2HH9HT$A $HHD$IDH?8HMHHHHH;,`H;G`H;Z`*H;=` H;8`HD$#H<$HXII[D]LLA\A]A^A_fD1ɺDH<$HX[]A\A]A^A_ IH;W_hH;:_H;%_HHH9mHNgmIHHrAH/ MkH1HHyIpIg1AA1t$xIDH;^HH[L<$IHLLL9E/LAuH5*0AH<$HHHX[]A\A]A^A_L}L+}HT$IkHT$HH9KLL<$DLd HHLH;]H;]HHHAJ4HII9uLL$DD$ L$D$DD$A$5D$1A\D$EKuIT$ID$(H|Az11|$D$H;] H;]HHH;]H;\HH H<$IHLL E$AD$LL$DD$L$SDD$AIVH<$Ll$ HMLH诟D$ %uH<$LIHEHI9HH$LH5_(HtILk$D HX[]A\A]A^A_D|$E1D$H;+\HHqDH<$HX[]A\A]A^A_阌uIT$ID$(H|ttAA11LmL<$HH5'IULL)E/IG I |Lm @IH<$HXHھ[]A\A]A^A_u1D|$E1T$u 1fDHw(HOIH|1H9HHHk 1HHuk1HHu|1HHuf1HHuw1HHus1HHuo1HHuk1HHHHu H1HH1HHHtI@HHH?HHHBHHHH뾐H9u\ugHVHF(HOHDHW(H|t5Ht?HGHVHGHVH9uHHH9DHÄøÃff.fAVfAUATUSHHpHH{D$HHD$pLgfo ^D$@0HD$hD$XMrI|{Lt$HLl$@LݫILHH %LeT$@HD$PHD$Ht:Mu/HHp[]A\A]A^LHHHATIULSHHu. u&MMBHHLH[]A\|ILHHT$H4$EH4$HT$t H[]A\ 6HIH[]A\QHHHHH;Wr6H;WH;WH;WH;W҃H;`Ws%H;GWsH;6W҃H;8W҃H;BWsH;1W҃H;;W sH;%W҃H;7WH;"W҃ H;\W҃pf.AWfIAVMAUATIUSH(fo[H$ L$H$H$ H$I@D$xHD$@A@,$D$\HBHBILL$HXH}gD$`0fHnfI:"@Ƅ$0HD$HD$PHT$TL$h$)D$0A$HD$`LHHD$,HT$LL1HD$MeDŽ$HHT$Ht$LHH tHHH1HH_HH:H:HHUHcL,L$It{H\$0LLLMHLHLIt$HT$LLMHyLHL[Au%IOIW(H|u$u$HD$ A D$A D$`<X $<gHT$LLH([]A\A]A^A_DHcHTL,HHHH1H|$`HL$0H$L$HH59 HD$0H|$$H\$ HT$LL1RHD$M1҃H t$LHNgmrsDfAUATUSHHHiL^Hn(HN$ND%Mt^LNLVO,IM5H_Cy 5IHHHHFLH)t!I"HIHHHL[]A\A]þظH=|RH)ILJ$IJD%I1Ht1LIMHHIH~p~ff.fAWIHHAVASHB1HHtI1LV(IHFM|L?I9s H~[A^A_HQI)L1J4HHLQLL)I)I$II1HHFIDK˘LH@AUAATIUHSHH H5HH9w {1D HG(HKH#NJH9HPHHH)H#NJHH91ɺHSHH;+QsAH;PH;P?H;PHHKH[]A\A]H; QH;PH;PH;PHH 1LcH#NJD H9͈HC(HPHHH)H#NJHH91ɺfDH;1PH;4P sH;PHHHHSH[]A\A]DH; PHH ҐH;9PsTH; Ps8H;PHHfD1H;OHH;OHHH;OHHtH;OHHaff.ATI1UHH1SHLHH[]A\饾DAUIATIUHSHH uH5FH9w XHMHC(HCH(H@HCHH;NsIH;NsmH;N1H;NHLLHHCH[]A\A]fDH;NsZH;Nr@H;NH;N H;LNraH;SN sH;=NH;GN yH;vNsMH;]Ns3H;LNVH;MEH;M4H;)N#H;(NH?H9tH݃IAPI1Hx6 1҈1HGHG(HPH0LHGDLY黼H?H9H޺ff.@HOHO( H#NJ1H9HAHHH)H#NJH9H1HHHHG黺ff. DAWfAVAUATIUSHH(foQHv(H$ HL$IL$D$HD$xfoEKHD$XH$ $foJD$00D$`0H$HD$ HD$ L$8L$hH|Ƅ$H$$^IոIT$IT$HIAoD$HD$A$HVIU$H$PfHnHH$H҈$fI:"D$ H$H$HHT$(HD$( Ƅ$HDŽ$HDŽ$HDŽ$H$HD$$H%Ht$IEHDŽ$ HDLH9HLHT$H$HKHD$H$H)H4HKH9H;JH;JH;eJH;PJffHKHH*AHYm[H)H*\e[^f: H,L9LMH9Ld$`1ɺ1LM}\H$Ll$0H$L$ sL;=IL;=IL;=IHDŽ$DH$MHHLMILH LLXIL;=IL|$ rL;=IsoL;=xIL;={Is1L;=cIH @H$sL;=IL;=I s1L;=HHL;=AIL;=$Isj1L;=IH1L;=HHfDvfD1L;=HH [1L;=oHHC1L;=HH+L;=HHH$Ht$ #|$0 D$0 |$`D$` H|$$ %  @H([]A\A]A^A_Ht$HGL41$Mz HT$LHnLH  L1HHHHHHtHHHHHHGHcLLj@ L9iHCH HH)I9sHVHF(H|%HFH~HL)HH9EHxeLHHELmITH9S1HCHH+H9A $HLHH[]A\A]A^LLHH)IHY{$Lmw$C$HjFHcHDIw.8HEM=ITH9S|w@YIvH}(Hu3HHHEH;@Lm믉L1H5'MtSEtHE@ITH9SHLH[]A\A]A^aMtEtmMdHEH}( 1HHMt߸!Ht4I&MHHHT$H4$nH4$HT$t)H[]A\A]A^H}(2,2)HLH[]A\A]A^߿ff.@ATIUHSHHTH$HD$tgH;>H;b>H;E>H;0>B˃Ht$HHcHrH$Ht-Ht'H[]A\HI<t1HcH\$H|$HH;.>rVH;E>H;(>sH;>ɃuH|$uH; >ɃWH;=ɃFH;=@H;='H;=Ƀ H;_=sH;N=ɃH;U= !H;=Ƀ@SHH tHC(fo;CHH[H53H9w ~H(HL$D$Q|$HC(uH3HC fAWfAVAUIATUSHHHfoAH$@HT$H$H$@H$H$@H$HD$HH$8HF$$H$fo;HD$ $fo:HL$Ƅ$0Ƅ$0Ƅ$0HD$HƄ$$$$$(HNHV(H|Hl$PL$H蒎HD$LLHT$HHD$L`聼1H$AEMmIILL)HD$8HL$HLL贺oD$,HL$M)LHH5?Ll$0腺@H$L|$lHD$L$L$6MHLHHjHL$MIHLHcMIHLLLL $LH|$,t5MHHHL`$LL׷H{( 1LLH!HHL$0HL$ HD$ HC$$$$=$$lHT$Ht$ HHt$PHD$tɨHH[]A\A]A^A_HL$LLҸMmIII@H%Ht$8HxJHHL$ 1HHT$Ht$HFxHT$H菨aHL$HT$0HHEHT$H[Hkt$8LxHD$,bfDIHHHf.AWAVAUIATUSHHH$Ht$HD$ H H9DfIAH*HD$L蛟f(f^ II*Yf/ I\HH,HH9@H5.IE H9HMH9Ht$IE(I\$ABtI#NJH0HL$Dt$,Hl$0tSI}(HL$MLHLH4IHHD$I}(LL7HHfDLsLLII}(HL$MLH4HHHD$I}(LLB6HQI}(HL$MLI^LH:4HHHD$I}(LLW6H^HHD$MwI9 IE(MH fDt$,Hl$0IHAEIEM}D AEIE(JTH;6!H;5H;51H;5IWHLJBHH,IEIE I9HIMH9>HT$ HHHL[]A\A]A^A_ߤHD$MGI9HI}(LJ HD$LLLD$8#5LD$8H MDHD$LEH9 I}(H LHD$LLLD$8B4LD$8HuM$@H;5H;4H;4H;4 HD$MGI9kI}(LN4HD$LLLD$8K4LD$8HH% H;>4rhH;E4 jH;+4YH;24 HH;a4sMH;H4s3H;74%H;3H;3H;4H;4AE  H9HT$ LHL$џHL$ H H ; HT$ LYHT$ HHHL[]A\A]A^A_鋢H 5 fH_Cy 5AWAVIAUIHIATIUSHIVHH H8HHCI)Hy2HNIL)NHHHu@HIHHHHƤ~HHI)fDH(\(HHHIHILIHHI)HcNAdH1I\HIH t&I@zZH uIrN fDL1MHIHILHHHUHDHIHHH TH!HI)AHtv"Aʚ;HzAoA@BHXAMDHKY8m4IHHH Hi'I)2f.HS㥛 HIHHHHHiI)HCxqZ| HIHHHHHiРI)H3"[3/#IHHHH%HI)MHILLH(\(HHHHHH LLHHEH)HMHI뱐I TH IvHDHIGwIHIHHHHd HHI)@HIH<HIHCHIT:HIHCHIT:HIHCHtLIHHs^@HЄK8IHHHrN H)HI)3I]xEcH Id HIƤ~HIo#DHWx/e9IHHHo#H3HI)HS;\HIHHHH]xEcHHI)|A'aAVff.HSHMI#NJE1H HAI9AE EEHIULHHJLLI#NJL9AI9AE EEHOILHHJLLI#NJL9AI9AE EEHOILHHJLLI#NJL9AI9AE EEbHOILH HJ LLI#NJL9AI9AE EE;HO IvIH#NJLL MML9+M9"L HE1I9uf.1I9sSJ N J IHH9s:JLIJLI9s'J J IL9tf.1LH9rH[IIv8uLHI-I9qIv8uLHOICIv8uLHOIjIv8uLHOIIv8uLHO IvIv8uMAL HI9MH#NJJHSH9Ao$JII9sEuLMAff.@AW1AVAUATUSHhHt$HLjHIHN$H11MwLJDHHLH)IH#NJHt$HHJ IE1H1IIL1HL›IOJDHHLH)IMH#NJHt$L4HHH<{IE1H1IILH1LZJD5HHLH)IH#NJH|$HHJL7/IE1H1IILH1LJD5HMwHLH)II#NJIHIH\$HJ rvHD$ H\$ HT$(Ht$(HL$0H\$0HD$8Ht$8H\$H|$H1Ht$Ht$nKHHHD$H)IsHh[]A\A]A^A_H1HL$PHHT$XHD$H1Ht$HHD$@H\$@H\$PHt$X1HRIE1(1HRIE11HRIE1ff.H_Cy 5IAWHAVAUATIHUHL<SIHIHBH) HJ?H|$HƸH"H!IH9a Ld$XHD$`E1IL|$ HD$L|$8Ld$Ll$@$LMHIL9LH"LsIMIL)I"HLME1IL)AI"LAHEMuMuMlH91HII)HLDI9)HD$HIII)HMM)IL9I"MsILHM)I"LLIE1IH)AH"E1HAHMMH9M1LII)HLDI9@LHd$IIII)HMeMIM9aI"MsIMIM)QI"LLULE1HL)AI"E1LAIMMHH9!1LHH)HHEH9HHd$IIHI)H/LMHIL9|LH"LsIMIL)I"HLLE1HL)AI"LAHEM]MYHPH9lH)H9rH)HD$K NH$J4IL9L$ H$1K< J HD$NHLHH)HHDH9H H9*HD$IIII)H}LH IL9LLH HME1I L)AI LAHEM$MuMu H9H)HDHIL9LH(LsIMIL)I(HLLE1HL)AI(LAHEMMuHu H9uH)HjfDLH IL9LLH HME1I L)AI 1L@HM HuH9s MH)Hf.LHM9I(MsHIII)H(LHLE1HL)AI(E1LAIMMuHu H9H)If.MI M9I LLME1I L)AI 1LIMH HuMu H92H)I'fIL9I(MsILHM)^I(LLbIE1IH)AH(E1HAHMoMuMu H9HH)DLH L9}I MsHIE1I I)AH LAHEMZ MuH9s MsHH)hHIL9LH(LsIMIL)I(HLME1IL)AI(LAHEMXMuMu H9$H)HfDH)I(HMLHI(ILHwInH(IILgI^I(ILHEII5LIH HLIH$IH HLIIIIII LcHHӉID)DDl$,HD$\HH|$HH\$PHZM4DH,$Lt$`Ll$HIHLHLLHL9rH,$HcD$XHwAHH½>Ld$hH MHD$0H!H"L|$ H!IHD$HHHHD$8IGL|$PHD$@M9H|$0LHL$HHHIHL$L$,IH|$ LLT$HHL$8HLIH$M+H9"HH IH)/H$H HHI1MI L)I 1LIHټHHIH$MH9HH H)H$H HHH1II H)H 1HHHaH LIH$H$HT$H$MH9HH H)H$H HHE1HH H)AH HIMܻHuHu H9H)I@HH9IIH(HLILHL) I(HLsHI1IH)H(HIHtHMLIH$M:H91H4$HHH)IHIH(HILHL)OI(HLsHI1IH)H(HIHHHIH$MH9H$HHH)HH(HHHHH)H(HHsHI1IH)H(HHHH]LIH$H$HT$H$M=H94H$HHH)HH(HHIIH)H(HHsILE1HL)AI(1L@IMHuHu H9H)IH"IHHIH"HHHHLHIH)HH$H H) HHH)IIHH$H H)hH_LH)IIIH$I H)ILT$I`L|$ HT$HLLd$hL޸H\$PH9\$Ht&LT$XHnIHL$\Ll$`LLt$PHHLLHeL9rLGHT$PHt$HLeHx[]A\A]A^A_LH)IIH$HH)IIH$5LHIH)H$IHHH(HHH.%II(HLH߷t_DAWAVIAUATIUSHxHt$IH\$H|$pLH|$8H ILiH1IHL$MHLIHT$@H\$01H|$Ht$H9I4Hl$ Ll$8Ht$(H<$H\$HHl$PHD$XLd$`HD$(H$HHT$M N$ItEEEDLE1LAAAHHtMHt$DLHEt Et fHt4@4HD$AJ8KD%DHHHE E  LLIDHHHEq EW B ILLM9DHHHEt Et fHt4@4LLDIHHHEt Et fHt4@4LLDHHHEt Et fHt4@4LLDHHHEt Et fHt4@4ILLM9LLH<$1LH9|$EEEELAAAAHHtIH|$DLHEt Et ,f,HEt4@4L|$KD%H|$DHHEEEL|$LHH|$DHHE0EEHL|$LL9H\$DHHHEt Et ,f,HEt4@4LLDHHHHEt Et ,f,HEt4@4LLDHHHEt Et ,f,HEt4@4LLDHHHEt Et ,f,HEt4@4HLLL9L4$H\$H$H|$0H|$ H9H\$HHl$PHD$XH|$@Lt$Ld$`HH0Hx[]A\A]A^A_HD$1LAHD$H$poA)Eo@A)Eo@ A)E o@0A)E0o@@A)E@o@PA)EPo@`A)E`o@pA)EpoA)oA)oA)oA)oA)oA)oA)oLA)IoHH)o@)o@ ) o@0)0o@@)@o@P)Po@`)`o@p)po)o)o)o)o)o)o)oL)o)o@)o@ ) o@0)0o@@)@o@P)Po@`)`o@p)po)Bo)Bo)Bo)Bo)Bo)Bo)BoL)BI9PLLH<$1LH9|$>AH\$fAoEIfAoECfAoE C fAoE0C0fAoE@C@fAoEPCPfAoE`C`fAoEpCpfAofAofAofAofAofAofAofAoLH\$IHT$foHHfoBfo B fo0B0fo@B@foPBPfo`B`fopBpfofofofofofofofofoLfoBfo B fo0B0fo@B@foPBPfo`B`fopBpfo@fo@fo@fo@fo@fo@fo@fo@LI9U#4@4,f,H4@4fH,f,HYB4@4G4@4)fH1L H$H9\$Z鼬麬AWAVAUATUSHHHDH<$HHH$HD$HHBH$H$gHEL$IIHIH$AL|$ IL\$0ML|$xH$IIL9$LH=aHI L?HL$@HHD$HH#IuHD$HL$0L|$xH$H$IHHD$PHD$`LHHT$XHHt$pHD$(HD$ I9ZIL$HD$hHHD$ L$H9HL)Ht$(HL$H IHL$8LH|$pHt$XL $ Lt$`H|$0I{{IL$L $L$I)H$IHM9H~H|$8;H$H|$0LLH5E1ooH?HoP oX0o`@ohP)Eop`oxp)M)U )]0)e@)mP)u`)}pfofoKfoS fo[0foc@fokPfos`fo{pHP X0`@hPp`xpLHHHI LHd$IH!HM 1M|Md HMDHVLII)HLDI9LMH)I9rBIE1MALH)MIDH9ڬMI|I)I9;I3HHL9ILIH(LILHL)G I(HLsHI1IH)H(HIH&H LIHM H9 HHH)HH(HHIIH) H(HsILE1HL)AI(LAHEMMuHu H9WH)HLHH HHH HLH1II H)H HIH׫HZLIHMHH9?HH H)NH HHH1II H)H E1HAHHGMuMuH9DHH)qH"IHHfIIM11AuhH@LLHH)L9H9sIIHI HDHVfHйLHHLH)H1L9H9sII LMHHrHfLHHLH)H1H9II LMHH0@H+@*Ht@Ho@nf[]A\A]A^A_DLd$H|$IHt$MMK6Lt$I8IHD$L\$K3O,M$1I|ME1L IIMAMI)MMDI9MMI)I9HILH)H9HI(HLH9CN鋡fDH=)uH"uH9tH^OHt H=tH5tH)HH?HHHtHOHtfD=tu+UH=OHt H=Gdt]wH#AWAVAUATUSAWHrHROHtHNHtHHsHNHsTHNH5&HC`HPH_tHH@(HEtH6tH'NHP`HHR@Ht<HsH4HH5HsHHjNL%{pH-nLHjqHoHnHulHH=QkH=lL=>LIH}L-*H=pHL\H=5oLLBIx HIH= HHH5 HIHHL1HH5 XHHH5 HuHfrHHx HHIx HIsH=^ HHmHLO 1H [ Ha H5_ HqHLIHHqLLHIx HIH= ZIHH5 HIH|H=KI1H @iH H5 mHqHFHx HHIx HIIx HIH=PIH,E1LH5 HL5Uq HH5LHpH5 LHJ1H= H0HpHHH5 L~ |HepHwHfA=H5p1IM2H1LVHHI$xHI$HHLHtHoH JTII=th7=@@H fHf1H5fI-H^IHH5o1IHIHfH5Yf1IH~eL%dHdI$HA|$H5Vetk1pHHI|$1HID$HHx HHIT$I4$LrI yHHH1H1HHnHHDH5 L-1H= HunHL%]HH5 LLLH5y L1HOHnHHfo$tH@ LIH55 @HtLb8HB(H"BPHB0L_1HHmHHBfo sH@ LH5H@(HH!Lb8HB0BPH-%LH}t2H}IHHuHLjHHElH3HK1L%?H-lM4L HDHHwLLQdHH@uHH5L< H5LHxZL[]A\A]A^A_ fUHSQHt3HH3HHtH CHCZ[]ff.fSH=l1QHH1H=kC,H1HHZHxHHupH[ff.S1HH=#fHt1HxHs P0SPPP[ff.fSHVHHHHxHHuHD$D$f.qznHf[UHoSHHQu:HbHHtiHbHHŅxHHuHwHZ[]HuHu+H=<HH0DH5H81H=Hzfۤff.HuPHCH5H82HZø fDSHFHHH9jt)7H{a1[HFff.ATUSHG tRH1L%_nH tiI I<$tIIt$HHHt;uA l$HCH5H8W[]A\&H_HBH5H8'DSHHH~H5cȣH9htgH9ht^H9htUtH=hHHx HHHtSHxHHuHLHBH1HHt1p,HBH58H8a1f.AU1ATIUHSH(D$ 赢HHHx HHHHt$H1cHl$LHt$H1DLd$H=cۧLl$HHHxHKIUIt$LD$ I$x HI$t0IEx HIEt(t$ Hߧu?H(H[]A\A]LLI$xHI$|Hl$HExHHEuH1ff.AT1H CUSHHHH>H0H-@D$ LL$(1LD$Hl$(5HD$(H9#HD$(HHx HHFHL$(Ht$HڿʭHL$(HT$Ht$ 詭Hl$H=Ub@Ld$ HH#HL$ IT$HuHx蘚HExHHEI$x HI$t?t$ H|$(BH0H[]A\HxH53`n%>LIHExHHE91ff.fAV1AUATIUHSH0D$ӟHaHHx HH1Ht$ HH聬4Ht$(HL1gLt$ L%aLLl$(HHGLIHHpIMIVH}LL$LChIx HIIExHIEuL*t$HޤuMLHH=]1&I$xHI$DHUxHHUYH0[]A\A]A^I$xHI$uLHExHHEuH1HD$ Ix HI*HD$(Lk"fDAU1ATIUHSH(D$ HHHx HHHHt$H1êHl$LHt$H1褪Ld$H=P_;Ll$HHHxHKIUIt$LD$ ?I$x HI$t>IEx HIEt"t$ H?'H(H[]A\A]LaLWI$xHI$Hl$AU1ATIUHSH(D$ HIHHx HH HHt$H1蓩Hl$LHt$H1tLd$H= ^ Ll$HHHxHKIUIt$LD$ _I$x HI$t>IEx HIEt"t$ HjH(H[]A\A]L1L'I$xHI$Hl$AUIATIUSHXH);H\$H\$H\$H\$ H\$(H\$0H\$8H\$@H\$H臛H9HHxHHEVQHLLH Q?HD$PPHD$PPHD$PPHD$PPHD$PPHD$PPHD$PP1LL$PLD$HvH@HD$H9Hl$H=PYkHHH|$1HCHHEtEHkPt$Pt$Pt$PLL$PLD$HHL$@HT$8Ht$0H x@HXH[]A\A]HxH5hZ裚dH|9H5=H81HxHHuH1WDSHwH1qHtHHCt[fUSHHHHx HHpPH{ɃHHHH=Q1HH]HH[]fDPH8H5H8ZfQHw1HtH~H8Zff.SHHH{ڥH[AV1AUIATIUH1SH HD$T$HHHx HHh1Ht$HL藥LHt$H1}Ll$_H;-7H=ZLt$Ld$HHHKIT$IuHxMLD$IExHIEI$xHI$uL=t$HH H[]A\A]A^1Ht$HH跤LIExHIE>H|$HxHHuHl$IFILL$HIH\$H{ĈH Hx HHt H [1HHD$cHD$ff.SHHH Ht$t>H\$H{H5 Hx HHt H [1HHD$HD$ff.SHHH Ht$ft>H\$H{FHIHx HHt H [1HHD$cHD$ff.UHHSHH(Ht$thHl$HsH}Lt+HaHUx HHUtH([]HtHHD$ͰHD$1fSHHH Ht$Vt:H\$H{~u,HKHx HHtH [1HtHHD$DHD$ff.fSHHH Ht$ƋtMH\$H{tu(HHx HHtH [H!t1HHD$贯HD$ff.fSHHH Ht$6t>H\$H{GHJHx HHt H [1HHD$3HD$ff.UHHSHH(Ht$貊tTHl$HsH}\u+HHUx HHUtH([]Ht1HHD$虮HD$fSHHH Ht$&taH\$H{u(HyLHx HHtH [Ht#HHD$HD$1ff.fATE1HHUSHHHt$DL$舉H=9>$Ld$HHHxHL$HSIt$<I$x HI$t t$H>HH[]A\LbATE1HHUSHHHt$DL$H==脁Ld$HHWHxHL$HSIt$\I$x HI$t t$H螁3HH[]A\L¬ATE1HHUSHHHt$DL$H%H=<Ld$HHHxHL$HSIt$,I$x HI$t t$HHH[]A\L"AU1ATUSHHH5hH8D$ HL$1HT$HT$Ht$ Hٿ胇HT$Ht$(HٿdLd$ H=<Ll$(HHLHxHKIUIt$LD$ 运I$x HI$t4IEx HIEt,t$ H2H8H[]A\A]L!LI$xHI$uL1ATE1HHUSHHHt$DL$xH=);Ld$HHHxHL$HSIt$,I$x HI$t t$H.HH[]A\LRAU1ATUSHHH5H8D$ HL$1HT$HT$Ht$ Hٿ賅HT$Ht$(Hٿ蔅Ld$ H=@:+~Ll$(HH%HxHKIUIt$LD$ 诔I$x HI$t4IEx HIEt,t$ H/~ H8H[]A\A]LQLGI$xHI$uL+1AU1ATUSHHH5hH8D$ HL$1HT$HT$Ht$ Hٿ胄HT$Ht$(HٿdLd$ H=9|Ll$(HH_HxHKIUIt$LD$ /I$x HI$t4IEx HIEt,t$ H|EH8H[]A\A]L!LI$xHI$uL1AU1ATUSHHH58H8D$ HL$1HT$貪HT$Ht$ HٿSHT$Ht$(Hٿ4Ld$ H=7{Ll$(HHHxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ H{H8H[]A\A]LLI$xHI$uL˦1AU1ATUSHHH5H8D$ HL$1HT$肩HT$Ht$ Hٿ#HT$Ht$(HٿLd$ H=6zLl$(HHHxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ HzH8H[]A\A]LL跥I$xHI$uL蛥1AU1ATUSHHH5H8D$ HL$1HT$RHT$Ht$ HٿHT$Ht$(HٿԀLd$ H=5kyLl$(HH HxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ HoyH8H[]A\A]L葤L臤I$xHI$uLk1AU1ATUSHHH5H8D$ HL$1HT$"HT$Ht$ HٿHT$Ht$(HٿLd$ H=P4;xLl$(HHGHxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ H?x-H8H[]A\A]LaLWI$xHI$uL;1ATE1HHUSHHHt$DL$~H=i3TwLd$HHHxHL$HSIt$pI$x HI$t t$HnwHH[]A\L蒢AU1ATUSHHH5H8D$ HL$1HT$RHT$Ht$ Hٿ}HT$Ht$(Hٿ}Ld$ H=2kvLl$(HH HxHKIUIt$LD$ OI$x HI$t:IEx HIEtt$ Hovu@H8H[]A\A]L蕡L苡I$xHI$uLo1HExHHEuH1Off.fATE1HHUSHHHt$DL$|H=y1duLd$HH\HxHL$HSIt$ܖI$x HI$t t$H~u8HH[]A\L袠ATE1HHUSHHHt$DL$(|*H=0tLd$HHHxHL$HSIt$茗I$x HI$t t$HtHH[]A\LAU1ATUSHHH5HH8D$ HL$1HT$¢HT$Ht$ Hٿc{HT$Ht$(HٿD{Ld$ H=/sLl$(HHQHxHKIUIt$LD$ I$x HI$t4IEx HIEt,t$ Hs7H8H[]A\A]LLI$xHI$uL۞1ATE1HHUSHHHt$DL$XzH= /rLd$HHHxHL$HSIt$̗I$x HI$t t$HsHH[]A\L2UHHSHH(Ht$yHl$HsH}(HUx HHUtH(H[]8HHD$˝HD$@ATE1HHUSHHHt$DL$Hy&H=-qLd$HHHxHL$HSIt$jI$x HI$t t$HqHH[]A\L"AV1H eAUATUSHHH1HHH-9 HD$@HD$(T$HHl$(P1LL$(LD$ Y^kHT$Ht$(Hٿ\xLHT$Ht$0Hٿ=xLd$(/HT$ H9H=,pLt$8Ll$0HHDHKIUIt$HxMuuLD$ `I$xHI$IEx HIEt|t$ HpH@H[]A\A]A^Ht$8HٿwXIFILL$ HIvHIiL葛\L脛wLwXHExHHEuHX1]I$xHI$uL15Lu.HH[];FHD$Ht/HxHHuuHExHHEuH2w1HH51H8fw@U1H SHHHHHH-*LD$Hl$ vtyHD$H9t5HxH5EtEHD$H{HppHyH[]cEHD$Ht+HxHHu骧HeH5&H8v1f.AT1H UUSHHHHMHPH-hD$ LL$1LD$Hl$Hl$9uHD$H9DHD$HHx HH*HD$Ld$ LHpH|$H9uGH=IHHt}HsHxLHL$ 1t$ H|$3JuZHPH[]A\.Oƅx?Ldu銦HxH5 GDcH H5H8iu1HExHHEuH1tVH覂IH'=HZQHJuHZHZf.QHtHZHwҥZf.QHtH{ZH7Zf.VHvtH;tHZYeDU1HH=3SHD$ HHdHT$ HuHHxED$ 'HH[]fU1HH=SHD$ GH8HT$ HuHHxAD$ HH[]fAT1H USHHHH-HPH-HD$ LL$1LD$Hl$Hl$rHD$H9AHD$HHx HHHD$Ld$ LHpH|$H9tULƅLbH=FHHtaHsHxLHL$ t$ H|$Fu>HPH[]A\HxH5$A`HH5H8Fr1HExHHEuH1q@UH=8SV!FHHt/H@@Hk1HH HC0h{1HHK {HZ[]ff.AU11ATIUHSHXHD$T$ @H(HHx HH1HT$H5̡HtH|$Hfo HD$D$ HD$HHGD$(fo HD$D$8qIHH=EHHt|HH?I9tLHIt$H}HD$(HKHT$ LD$ t$ HEu1HXH[]A\A]úHLYHRrHt"1HExHHEuH1oH=dODHHb1HH51H8pxfVH&=tHHZY%DPHZff.AW11AVAUATIUHSHxHD$HD$HD$ HD$(T$ >H HHx HH1HL$HT$0HH5qH|$0HGHt$8rHHLl$8M8SPLt$@HE1L_)H|$HL|$XLnHvL|$`LnHUEHSHL$ LI|$,HHZHenHD$8HE1HpH|$(IIH|$ IH|$yIHHxL[]A\A]A^A_LFmH=Lt$0LkCHHH=H`mIHExHHEuHsmMXILHLH51lIIExHIEuL/mMFHH;mJnH;H5KKmA?LHD$HH HD$X\HG HL$XHT$H5!udH|$HL$`HT$ H5uEH|$HL$hHT$(H5u&L1H8H5ǝH8lH|$(GH|$ GH|$GEE1*A?LHD$ HtH HD$`H5H=-mHH I}pIHHHLt$@LB(HL_SP@&LAfD$SH uHuHt$81HmH|$(IFH|$ FH|$FHj HH5H8CkHH5HH8(kD$ HH5JH8ktLt$@SPHLZ%E1锝DE1AUIHATIUHSAPL mHtHLH oHIŅxHHuH/jMJLjH1I$H HE1Z[]A\A]ff.@UHSHH\$HiHH߾^iHHHiHHŅxHHuHiHH[]DHtUSWH==HHt-H@@1Hk1HHHC0 s1HHs e:HD$(H94HD$(HHx HHHL$(Ht$HڿjAHL$(HT$Ht$ IAHl$H=9Ld$ HHxHD$(IT$HuH{LD$ HH4HExHHE5I$xHI$uLet$ H|$(9u)H0H[]A\HxH54&HxHHuHd1HExHHE1ff.AT1H USHHHH.H0H-D$ LL$(1LD$Hl$(c<HD$(H93HD$(HHx HHHL$(Ht$Hڿ?HL$(HT$Ht$ ?Hl$H=E08Ld$ HHMHD$(IT$HuH{LD$ HH_VHExHHE I$x HI$t;t$ H|$()8u3H0H[]A\HxH5Y2 L4cHxHHuHc1HExHHEg1ff.AT1H USHHHH~H0H-D$ LL$(1LD$Hl$(a8HD$(H9c1HD$(HHx HH˗HL$(Ht$Hڿ >HL$(HT$Ht$ =Hl$H=6Ld$ HHHD$(IT$HuH{LD$ HHUHExHHEҖI$xHI$uLat$ H|$(q6uCH0H[]A\HxH5f0ÖHExHHEZ1HxHHuH1Paff.AT1H USHHHHΑH0H-XD$ LL$(1LD$Hl$(.`8HD$(H9/HD$(HHx HHHL$(Ht$HڿZ<HL$(HT$Ht$ 9HExHHEI$x HI$tt$ H|$(Y-uMH0H[]A\LXHxH5D'EHExHHE1HxHHuH1.Xff.AT1H USHHHHH0H-8D$ LL$(1LD$Hl$(W:HD$(H9&HD$(HHx HHHL$(Ht$Hڿ:3HL$(HT$Ht$ 3Hl$H=+Ld$ HHHD$(IT$HuH{LD$ HH/BHExHHEWI$x HI$tt$ H|$(+uMH0H[]A\LVHxH5%HExHHEݎ1HxHHuH1~Vff.AT1H USHHHHH0H-D$ LL$(1LD$Hl$(^U:HD$(H9$HD$(HHx HH?HL$(Ht$Hڿ1HL$(HT$Ht$ i1Ld$ӎH=*Hl$ HH}HD$(HUIt$H{LD$ HH/DI$xHI$:HExHHEuH?Ut$ H|$()u)H0H[]A\HxH5!$ʍHxHHuHT1AT1H USHHHHnH0H-D$ LL$(1LD$Hl$(S:HD$(H9S#HD$(HHx HHӍHL$(Ht$Hڿ/HL$(HT$Ht$ /Ld$H=p(Hl$ HHHD$(HUIt$H{LD$ HH/YI$xHI$HHExHHEuHSt$ H|$(a(u)H0H[]A\HxH5V"9HxHHuH\S1I$xHI$1ff.AT1H USHHHHH0H-HD$ LL$(1LD$Hl$(R:HD$(H9!HD$(HHx HHHL$(Ht$HڿJ.HL$(HT$Ht$ ).Ld$H=&Hl$ HH`HD$(HUIt$H{LD$ HHZI$xHI$HExHHEuHQt$ H|$(&u)H0H[]A\HxH5 HxHHuHQ1I$xHI$|1ff.AT1H USHHHHH0H-D$ LL$(1LD$Hl$(nP:HD$(H9HD$(HHx HH}HL$(Ht$Hڿ,HL$(HT$Ht$ y,Ld$H=%%Hl$ HH5HD$(HUIt$H{LD$ HHYI$xHI$HExHHEuHOPt$ H|$(%u)H0H[]A\HxH51HxHHuHO1I$xHI$Q1ff.UHSH%HHHuHH=D1QHx HHHyDAWAVAUATLgUHLSH^HŠLH^RIHHXHc`7HH=H~HEZRIMH{n1E1PHHH=jE11LHLGQHI aML+*H#*L*HL[]A\A]A^A_1HHC ^H>IHHNHHD$-P1HHHD$H9PA<H$0Hc OIHH$HDHLAH} NIH=~'QIHЈ1H=S1E1OHH#SHHSHHHx HHHHߺ[6AT1H 5USHHHH}H H-hILD$H,$GLH$H9H$HތHx HH(H $Ht$Hڿv(H $HT$Ht$V(Ld$H= Hl$HHqHUIt$HxzI$xHI$HUx HHUt)H H[]A\HxH56BHLff.@AT1H USHHHH|H H-ILD$H,$J8H$H9}H$HHx HHcH $Ht$Hڿ&'H $HT$Ht$'Ld$H=Hl$HHHUIt$HxI$xHI$HUxHHUuHJH H[]A\HxH5)5AT1H USHHHHN{H H-ظLL$IHl$IHD$H9;HD$HaHx HHHL$Ht$Hڿ%.HL$H$Ht$%Ld$$H=U[ÐH1҅HD$HHCHD$HATIHUSHNXHHSX1HL4HHKLQMy[]A\HS(1HJ4ҺIHDҹ҃KCff.AWAAVAUATUSHH|$HۋIaH\$DfE1fH1D$H=KL1IcHHFD9HcA)HIIt'DD!t空t|$uD$H9tH]|$fHC)H[]A\A]A^A_fUHSHQ;0t2-JHHDQtHHE8HEZH[]Hf.AUH @HATfHnUSHHfo 5HO(fG>- GGWHt$OG8tH q@V^MfSQĀa1^VHl$EPՀ)< !DeA0yIIHBD`},}.Eƒ߀Et-I,KH@8z@8qK9~4H~@?P@t HcD @AWfAVAUATUSHnD$hfoH$H$Hc HT$HL$D$`0D$xH9IHDE1EIHBDpyC< m<+%LCRE1D$@gHSAHGLt$`H|$XHDLx=fHnH)D$@HzHCL|$X8H+HLRHD$XH[]A\A]A^A_&@eLt$`@fuHHSAHL蝖¸t I|$$8Ά@%HT$LLA ]^HD$hMLd$HL9?DCH{D$?L)DD$?LL$@HL$?LIĺILLL$MIt$I|$?HD$XHLL$DD$MAzA<A@<dA=HE1MLLD$ LHL$LT$Ht$J<>BHL$11Ht$LT$LD$ H91L >I9HLLOH#d H9APՀLE1< IuLbA $HDNtILH)<.LL)H)HC 8HC(8E11Ll$@MHt$XLLSULD$8HL$0HT$(L\$HD$PHxEHD$h_AXHL\$HT$MLHL$ LD$(SULKLXZL|$X1BAHB,oHc H9HI9T$Lt$`HL$LL$LM'Hc H9HL$LHLL$M LD\EHM1L9t$1J<>I9u HMDLD HB!pH|$8GfDATAUSHH t!D f C1HCH[]A\H5H9w DffATIUHSHHu1HVHF(H|t=HHOHHLH[]A\=Ht$BHt$tH[]A\A|$$tHH:u뗐ATIUHSHHu1HVHF(H|t;HHOHHLH[]A\9=Ht$?Bu!Ht$uA|$$tHHH[]A\ÐSHNt3[fuuKH(HL$HT$Ht$H<$A?Ht$H<$HT$HL$u H(H(ff.ATISHHu2u-HHJ1LƉ1&{H[A\HLHT$#HT$tff.ATIUHSHHu3u.HH*J1LƉ1zH[]A\HHLLD$#tLD$Aff.fUHHHSP1HƉ1GzZ[]ÐATUSHH`6ʉÃA8uNH uIHq…tEkAD$H`[]A\HCH9EtҍTD)لʉ9HGH{HHHD$HE HU@H|$H@HD$ HE(H@t$0Ht$0HD$(HCHT$HD$@HC $HD$PHC(HD$X1HD$8HD$p 1H1H))fDUHHHSP1HƉ1xZ[]ÐHhHG(oGoOHHD$(oVo^@D$HN(Ht$0$@L$HL$XD$0T$8\$H HhSHJt#[fAWIAVIAUATUHSHH8 HVHF(H|Ld$@A, LLD$d H$0ffo]D$p0H$H$0H$H$0H$H$0Ƅ$0Ƅ$0Ƅ$0H$(L$x$$$$$$$I9u!L$HLLI.MI1L$IމT$hHHD$ HD$LD$LLH|$LuoAu*IVIF(H|tHt$H|$H-EAG(HLLD$hHT$PHLHt$@*HLL6|$pD$p$$~$]$$$ H8 []A\A]A^A_H8 1ɺ1[]A\A]A^A_!uHD$ i1;u隊ъuPHOHG(H|t@USHH_H.H9|H[]HHHH|$H)H)HEH|$H_f.LGHGLHH9|uLOHG(J|tH)HBI9}ށ @1HWHG(H|tHGHGHH9F1ff.fu'HWHG(H|tHGHGHH9F1ÐAWIAVAUATIUHSHH HNHV(H|H5LBIOIOHHH?H1HGmHH;EČLl$ }, HLD$DjH$ffoD$P0HD$xH$H$H$H$H$Ƅ$0Ƅ$0Ƅ$0H$L$XD$h$$$$$$I9K1L$D$HHEHHD$HD$6u AEjLT$Lt$LIrLHT$MLLHMLHHH5A $@$$b$$4$$eH8 []A\A]A^A_H)Ht$H$LHH|$ HD$(FyH $MHHt$ HT$(H$HNLƒHڈHk Lk DIGH=HH|$LT$Hx[u|$uR|$P/mD$PGm$&m$lHLHHĸ[]A\A]A^A_Ã|$HLHILLLH0uAtZHHHVHF(H|ukH;҃H;s:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}obOB4 ?B to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. subtract($self, x, y, /) -- Return the difference between x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. radix($self, /) -- Return 10. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. number_class($self, x, /) -- Return an indication of the class of x. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. multiply($self, x, y, /) -- Return the product of x and y. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_invert($self, x, /) -- Invert all digits of x. logical_and($self, x, y, /) -- Digit-wise and of x and y. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. exp($self, x, /) -- Return e ** x. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. copy_sign($self, x, y, /) -- Copy the sign from y to x. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. canonical($self, x, /) -- Return a new instance of x. add($self, x, y, /) -- Return the sum of x and y. abs($self, x, /) -- Return the absolute value of x. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. conjugate($self, /) -- Return self. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. localcontext($module, /, ctx=None, **kwargs) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. C decimal arithmetic module ?B?d d KCLAMP_DEFAULTCLAMP_IEEE_754ROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCJ*m< d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJ @ @ @ @ @ @ @ @@PT /builddir/build/BUILD/Python-3.12.11/Modules/_decimal/libmpdec/context.cmpd_setminalloc: ignoring request to set MPD_MINALLOC a second time illegal value for MPD_MINALLOC%s:%d: warning: %s:%d: error: c c &c c KINITY%s, .,%s %s mpd_fprint: output error IEEE_Invalid_operationDivision_by_zeroNot_implementedConversion_syntaxDivision_impossibleDivision_undefinedFpu_errorInvalid_contextMalloc_errorggGddcdwcddbdbdbdadCad`0.[] @2.5.1sNaN+Infinity+Zero+Normal+Subnormal-Infinity-Zero-Normal-SubnormalkdjkkjlXjkVnqnnnVnVnVnqnVnȶٷͷk[ҹc c XLIK '1:DMV_hqz%,4;BIPX_fmtz $*05;AFLQW\bgmrw} "&+/48=AEJNRV[_cglptx|  "%),036:=ADGKNQUX[^behkorux{  "$'*,/247:<?ADGILNQTVY[^`cehjmortwy|~  !#%')+-/13579;=?ACEGI}{ywusrpnljhfdca_][ZXVTRPOMKIGFDB@>=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"! $`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?ZI>R>p(??ǁ?/@@P@gAPBBBB,C pC$C?CLIKIRTJJJKKF LˆpLPLՇMZ`M߈MN HN NN*4OɋONOӌ$PX`PyPQ`Q  L8LؗD.X X @P$ X Q y $0 5 ${ȞN|Ll4!t!!%&P$'$(@(())P * t+0!+H!,!4,!-"-".,#.#t/X$/%t0&d2-t5656565 76$768746P788d9898:8T:$9:D>d;>t;G;Hd=H@0QATATBT$BUDB,UTB@UdBTUtBhUB|UBUBUBUBUCVOW4OWSX4Z\TZ\dZ\Z8][t]\]4\`_D\t_t\_]_TaH`c`c`c`c`c`dae0aeDaealblbDl,b4mPb$nhbobocpHcrcDu$duLddvde~ffgē4iԓHiĔpiTi4iĖLjtj$j4>?t@?? @T\@@d@t@A4A4PADdAA4AtBpBBBC$DCCCDTDD$D4 EDdETEEtV,5D i A ? l]UAS>!]3AqLFH BBB B(D0A8FP 8D0A(B BBBA ln>JPH BIB B(D0D8D 8D0A(B BBBA l^K{ A 0?8\BA A(J0 (F ABBA D>Y0`d\`AD QE?" ^C(\AEG @ AAA yBCD D0(>0S  DABA $ DADI sAA@>? X AT@t BBB A(A0Dp{ 0D(A BBBA >fpX\ @IBE D(D0 (A BBBF D8M@T8D0A (A BBBA 4>0T[4h uADG w GAE Q AAE D[*H[< 9_Y d MAJ e AA  >  x .Al(=,@t ]BAA # ABA pZEA{ A =,ZBAA } ABA =  $[AG  T= D AA , QAGH, 8\[BBDD D(DP (D ABBA <]PH BEE I(A0A8G@_ 8D0A(B BBBF  <@0 D BBB B(D0D8I8T << 8A0A(B BBBA 0 [BJA TP  DABA  BP$  }BBD F(D@, sB@ (D ABBA @8 \BDB D(D0D`6 0A(A BBBA | D`8 ](BDD D(DP (D ABBA  DsP8 ^(BDD D(DP (D ABBA 0 DsP$L ( }BBD F(D@,t D@ (D ABBA t @_BED A(D[ZFFFFFFU_DDDbH (D ABBA  ]F88 \`.AlT ]F(l ADD0' AAF $ ,`jAAG0[DA F#0 \`A\ d`%Ac E h`AY@8 l` BDE D(F0DP 0D(A BBBA | ElP8 b(BDD D(DP (D ABBA  EuP, bBFA D0p DAB$E.0,@4cBFA D0p DABpE.0,xcBFA D0p DABE.00cBJA L0u  DABA  gE?08( dCBDA A(Q` (D ABBA dNEC`8eCBDA A(Q` (D ABBA 9EC`8e)BDA A(Q` (D ABBA $Ej`00fBCA Q@  DABA d>EC@0gBCA Q@  DABA 1EC@(4hAAA X AAA ,E 0hBJI D0q  DABA HD=0dh+D b A 0iBJI D0q  DABA D=08Ti%BDA A(Q` (D ABBA  Dj`8(,jCBDA A(Q` (D ABBA dDC`8$k)BDA A(Q` (D ABBA Dj`@kBDB A(A0Qp8 0A(A BBBA DpL<BBB B(A0D8GN 8D0A(B BBBA  EA0lBJA L0u  DABA E?0@(mBDB A(A0Qp 0D(A BBBA @EpD`n"BKA A(TxVRxApA (D ABBA Ep PptAO0J AA nF0 ptAO0J AA $NF0 <ptAO0J AA `.F0(xqAGL@L AAA F@ hqAO0F AA E0 qAO0F AA E0 4rtAO0J AA XgE0(pTrAGL@L AAA ?E@ rAO0F AA  E00rBJA L0u  DABA $D?00@DsBJA L0u  DABA tD?00sBJA L0u  DABA D?08s)BDA A(Q` (D ABBA Dj`08tBJA L0u  DABA lD?08 u)BDA A(Q` (D ABBA Dj`8u)BDA A(Q` (D ABBA Dj`88v)BDA A(Q` (D ABBA tDj`8w)BDA A(Q` (D ABBA Dj`8lx)BDA A(Q` (D ABBA $Dj`8@Dy)BDA A(Q` (D ABBA |Dj`0zBJA L0u  DABA D?08lzCBDA A(Q` (D ABBA $DC`0@d{BJA L0u  DABA tD?00{BJA L0u  DABA D?08|)BDA A(Q` (D ABBA Dj`8DMP-DhhD|DMDM DMD PD F A 0 |BJA L0u  DABA <D?0(X\|lAGL@z DAE D @DCALFBBB A(D0D@HBPAXD`O@l0A(A BBBC@ _AJ a AA 8 MAJ e AA \C t >Aa A ZC (hAJ @ AA {C 0<{BJA L0u  DABA LC?0L8{BKB A(A0OxbRxAp 0D(A BBBA Cp8 }CBDA A(Q` (D ABBA JCC`8 ~)BDA A(Q` (D ABBA < 5Cj`8X ~)BDA A(Q` (D ABBA  GCj`8 )BDA A(Q` (D ABBA  YCj`(!ACQP AAA 4!{CP8L!h)BDA A(Q` (D ABBA !.Cj`8!@)BDA A(Q` (D ABBA !@Cj`0!BJA L0u  DABA 0"ZC?08L"h)BDA A(Q` (D ABBA "ACj`("@AGL@b DAA "cC @0"BJA L0u  DABA ##C?008#܄BJA L0u  DABA l#C?0(#,AGL@b DAA # C @L#xBAA O ABE W DBA A GBE AGB $B  AAB@$EA{ A \$vBt$p$$ SAGL@|AA$@B@<$,BEB K(D0D@j0D(A BBB%B9@H(%lBBB B(A0A8GT 8A0A(B BBBA t%Ah0%BFN D0  DABA %A!0(%qAIN0w DAA 0&DBAD G0q  DABA D&A0`&t& 0&|wBND D0{  DABA &Ȋ$A^&܊ &؊@Ad A L'BND A(JZIAAOG(A ABBX'@t'@>oNH'hBBB B(A0A8G` 8D0A(B BBBA ',@c`'(Ac A A(O@,((Ac A AL("@`(t(@(( AMQ0 DAA (? 0((؎AJT0d AAA (?0()tAJT0d AAA <)h?0(T) AMQ0 DAA )?? 0()ܐ AMQ0 DAA )? 0() AMQ0 DAA *> 0( *t AJT0 DAA L*> 0(d*@ AJT0 DAA *c> 0(* AJT0 DAA *,> 0(*ؔ AJT0 DAA += 0(0+AJT0V AAA \+= 00t+ YBJA Tp  DABA +=(p+0)Ag+s= A E +,6A` A S,D=,,86A` A SL,=`,D6A` A S,<,P+Ac A A,<$,LNAMD0vDA,<$0$-\NAMD0vDA0-s<$0(H-jACG0} LAB t-S<0D CAA 8-vBEE G(D (A ABBA - <)0-Ė\BJA Tp  DABA $.;(pH@._BIA J(K_RAq (D ABBC .;$.lMAHA @AA.<.BFD D(D (D ABBA $/; @/+Ac A A`/k;t/AJL/BFB B(D0D8D| 8D0A(B BBBA /:.4/hEHD D(B0c(A ABB40:0$P0kAID0WDAx0:00ԝ $0НKAAA EAA0 (0 AMQ0 DAA  1(: 00$1BJA TP&  DABA X19P0t1 BJA TP&  DABA 1:P01BJA TP  DABA 1S:P02BJA TP&  DABA H2:P0d2@BJA TP&  DABA 2:P02BJA TP&  DABA 2:P03rBJA TP"  DABA 83';P0T30BJA TP  DABA 3|;P(3AJT0q DAA 3;003,BJA TP  DABA 4;P084BJA TP  DABA l4;P04BJA TP&  DABA 4;P04,BJA TP&  DABA  5=<P0(5BJA TP&  DABA \5r<P0x5BJA TP&  DABA 5<P5LKADD0 5;?>;?r;X@;H@;8@<(@<$@0<"@D<P BBG B(A0D8Dp! 8A0A(B BBBO > 8A0A(B BBBA  8L0A(B BBBE  8I0A(B BBBE 0<?Epn8I0A(B BBB=H$=BBH B(D0D8G`) 8A0A(B BBBH p=?`=_=?:= -D h(=$[BGA p ABA =XD>dBEB B(A0A8DP8A0A(B BBBX>?P(x>ܳFADD q DAA 8>BLF E(G@ (A ABBA >>@l>X7BFB B(A0A8G 8A0A(B BBBA DArBdARAl?>\?BBE E(A0A8A@X 8A0A(B BBBA B8E0D(E HBBH??3@B 8D0F(B BBBE B8J0A(B BBB8@FAZ A ]HX@,BGE E(D0A8G` 8A0A(B BBBA @;@ F4@Z>XBBD D(G`~(A ABBAz>-D h4A>MBBI D(G`n(A ABBDTA>BHI E(D0D8GPc8A0A(B BBBDA>BIB E(D0A8DP8A0A(B BBB0AU?iAKG0l DAF DNH(B?aAQ ` DF _ADBpXB?lBh $Bd|AAD pDAB^? 8BBEE F(L0T (A ABBA 8B(^BHH A(Q0n (A ABBA 8C>C0$TC0/DGE \AA|C>  CC>$Cx`EEA PBBC> CDe>$$DT>.ADA eAA4LDZ>qBBD I(E0T(A ABB$D>\FJD EAA$D>JAIG0vAADD D!E>$E{t8E,0@EEBBB E(A0G@p 0A(B BBBA F=@4FHF\FpFFF3AO H UFLFBDD G0_  JABE _  AABA Y AAELGZBFE E(D0D8J{ 8A0A(B BBBG lG0\MpMM#(BBE B(D0D8G 8G0D(H BBBK R 8A0A(B BBBE ' 8A0A(B BBBE W 8A0A(B BBBA x 8A0A(B BBBE  8I0A(B BBBE hPNBZ 8F0A(B BBBE Q 8E0A(B BBBE  8I0A(B BBBE N* N*N@DNL+ OD@ O+BFB A(A0J 0A(A BBBA dOCjLO0,BDD G0a  JABE h  AABA J GADOp,OC5LO(-~BIE B(D0A8G j 8A0A(B BBBF LPC> 8lP80BBA A(Gp (D ABBA PcEp(P0BKG z BBA PF  @ QhBDD G0d  JABE W  AABA <PQBDD G0d  JABE s AABQAUQeY0~ E DQ@E0D(Q dBDG0q CBA LRT05BED D(G@ (A ABBH  (A ABBF `RDI@0|RsBDD G0q  CABA $RD/AJA `AA0RLZBAA GN  AABA $ Sx/AJA `AA4SiDpdLSضAU(hS<1+BFI RAB8S@1BED D(G@ (A ABBK SC6@S2aE{ E TC T2U0T3 dDTBEE B(A0D8J 8A0A(B BBBA G 8J0A(B BBBE LTB2m 8H0C(B BBBE 8K0A(B BBBLTX2BFB B(D0A8J  8A0A(B BBBA LUCv <lUx8jBBB D(D0GPL0A(A BBBUDP,UVVAD0P AAA gUȷ=V $V38VDLV8`V/tV7VUDVNBEB B(D0D8J 8A0A(B BBBA G 8K0A(B BBBE G 8H0C(B BBBE U 8L0A(B BBBE P4WCQ{ 8K0A(B BBBE r 8A0F(E BBBE LWLqBFH B(D0D8J 8A0A(B BBBA WYD HW\BIB B(A0D8R 8A0A(B BBBDXDd LdX 6BEB A(D0 (D BBBK v (A BBBA XE`0Xp7HX|BFE E(D0D8J|8A0A(B BBB4YE$TY*ADD WDA |YEe bAALYcBEE H(A0A8O 8A0A(B BBBA YEr ZtD a I W A i`4ZxBBB B(A0A8Gp 8A0A(B BBBE I 8I0A(B BBBE 4Z[Fp 8A0A(B BBBA (ZAAG0m AAA ZG$0`[pgBEB B(A0D8B@ 8A0A(B BBBE O 8D0I(B BBBE 4x[Fk@`8A0A(B BBB`[DBBB B(D0A8Dp 8A0A(B BBBE I 8I0A(B BBBE 4\Fp 8A0A(B BBBA `L\XBBE B(A0A8Gp  8A0A(B BBBE I 8L0A(B BBBE 4\Fpg 8A0A(B BBBA L\BEE D(D0L (D HBBE b (A BBBA (8]xADE U CAA Ld]pBEE D(D0L (D HBBE b (A BBBA L]BEE D(D0L (D HBBE b (A BBBA L^0BEE D(D0W (D HBBE U (A BBBA @T^EBBE D(D0G 0A(A BBBA ^E@^|PBBE D(D0G 0A(A BBBA ^_EL_hBEE D(D0o (A BBBA Q (A BBBE Ll_BBD D(G@x (A ABBA K (I DDBE (_D@D(G ABB_,(_MAII0r AAA (`[D60L@`.BIE B(D0D8J 8A0A(B BBBA `)DgL`BBB D(A0r (A BBBA J(F EBB@a F20A (D GBBE A (D BBBE PDa/BAD L@X  DABN   AABA   GDBE $a4AFG0cAAaE0a-a{E(b0BBB D(D0G@ 0J(A BBBL  0L(A BBBE  0A(A BBBA r0G(A BBBb Ef@LbBIE B(D0D8J " 8A0A(B BBBA bEA Lc ^BHE E(D0D8J  8A0A(B BBBA dcE{ 0c1BDD F0|  AABA cEP0 c3gAG ` AA c=| dCBGE D(D0G@ 0A(A BBBE ` 0A(A BBBA D 0L(A BBBE D0J(A BBBdHBGE D(D0G@ 0G(A BBBE d 0G(A BBBE ` 0A(A BBBA D 0L(A BBBE D0J(A BBB8 eTBKD D(Gp (A ABBA \eDLxe1JBFB E(A0A8JC 8A0A(B BBBA eD$el4AFG0cAAfnE0(fl0BDB B(A0A8D 8A0A(B BBBA XyA OEB B(H0L8 0D(B BBBD  0A(F BEBK $zvb$8DzMLXzLNBBB B(A0A8G  8C0A(B BBBA zb DzTBEB B(D0A8 0A(F BBBF L{V7BBB B(A0A8D 8D0A(B BBBA `{XYt{%bH{XBBB B(A0F8DpB 8D0A(B BBBA {awp\{YKUB I(D0N8 0A(B BBBH YA8(T| \MP AA {|a$|]ADZ AA |fam<|aBUG A(K0o(D BBBH}_b BLE E(D0D8DP 8A0A(B BBBA `}aOP4}tSBEG D(D0s(D ABB}jh}c(H}cBPE B(D0A8P`o8A0A(B BBBd,~kKJN J(D0A8G 8A0A(B BBBA A~d(~BBDG qAB~Jg (~DBDI qAB( g LD`qBJE H(A0F8J+ 8A0A(B BBBA f'kiGDBL<BJB B(I0A8Df 8A0A(B BBBA H5i$lAADI pAAJ,TTGAAF؀kHaBEE J(I0D8D@ 8D0A(B BBBA <kJ@L\ BBB H(D0A8D2 8A0A(B BBBA ḱ^Gm$pKTT AD !m4gHm(L\( BEB B(A0F8GN 8A0A(B BBBA Mm8̂xBBB D(D0d (A BBBA n0(DMDqnOL\H BBE B(D0A8G2 8A0A(B BBBA Xn,ЃtpMNI FABALTBGB B(A0A8J 8A0A(B BBBA PotZr.D BLE H(D0A8! 0A(B BBBF Ԅ(rH8$[H` H _ A ,FJA } ABG $Lh] F G,t@\En E N J j F  J @pFHA A(}  ABBF V  ABBE ` @           'A@@@X p `08o`  0 Y@ ooooo6pFpVpfpvpppppppppqq&q6qFqVqfqvqqqqqqqqqrr&r6rFrVrfrvrrrrrrrrrss&s6sFsVsfsvssssssssstt&t6tFtVtftvtttttttttuu&u6uFuVufuvuuuuuuuuuvv&v6vFv  )))))))/ ))3))))))))))ե9@ EJOX^@ EJOXbc kc tXLI}8> `  p  /@p@@0@ȣãң ޣ`@@ ``"@)04`K;F CKTp`@is @P )))@ ɤФ  ڤ@`P@  P@ &2@7F@ S@apo}P P@å `Х@ץpݥpZ` W p@/  `0@ȣP ң@ޣ @@` p  `K ;F0@CT`p\s`p  ɤڤ@@0pФ0`7 @@P @`&2 7  F`a`o $`}p%`å&P  Х@ץ,J!_(S(!`jP(s(}#P)p@O@P0pZN @TJJTXETpX TKOU YX U`Y (p@UOܧۦpۦۦۦۦۦۦY̧ۦӦ ( B:ۦӦYQph@ @̧ħܧԧp)`J 3 `LJY32 hHP 0GM <ܧ̧ܧ '̧j.Jr+7_decimal.cpython-312-x86_64-linux-gnu.so-3.12.11-1.el9.x86_64.debug}b7zXZִF!t/]?Eh=ڊ2Ng7 JH$~X6.6^ogVmmnd)K| AzҮ  dV@; EcI@e5A[lhk+ wīt^J詝sPE=aދUAkA$Q^߇(qCF gA?Bh%#S4 ]ҝ,qWSPm~$yeG ǗscX,7&v? 8PЩ|ڟKNV:ҘН:`ӓX'4  N /<)&65d$r#4IElx3Xc %{T1%1^nZ?(SE0EpYm(r< /#lhCl$>R$'t\-W ccD >JYxpI7יa34}4U[`dvgY/dnZ6U47EeX]JCe IkYLDHa/$O66 Lc~e TL1'<@E:+3GavH9TR/A|Ip‡<|<^Sk:Km -R<)7^% J駻_>e.0e ? Zn+x()6`&`Ekig"睐>Rv'hvD:yDdn:9igٿA#0Hj۶O;sPSGpz!=&[L6vyli@MTkbݬEҿF Z1ooMo$(BЋ8q d IWVݣ +ߦ6X߉@mdK)-LYa~ -#' Tu}>E&,i^ +1j fZvlOEΐ!Yįm%g}B4=K{iF;&* 6 HXeqgP+SZsCˍΊqo&/kce -iFo`PjPSK[kըزF>jgDCO(F~#G %Y3-b2HDHF̆@Cإ2\ Y^<{ xCE@п^bqZZ8^Tlxqs* %j.ߟ ]vEt˅fCE!"8q#n0`]O}v<`r.6i,_:D9υKRzNTznC0pbLsF5nO ,3hѷ* 9ٞ(@f:#Y;E#.U}T6IԮeQnBforv;>C?X4R<[pkl6}aXv(D)['Bq+h@SyHyl*˙}X-|.ݼc2CJHG!H{ӯ%ÛOsZN1E-:<͗ثP'.z/N$)k6YtV/q yӋW|y/ $iN[R_9\Hmj`Rf,+].0j+i' -!ٴ141'}[nw%d( 1/L˸qwǮ~o>#^3D._CZ߷K-2 U?=͚׸dž6nqoІ~%!ikGYJя{W Dydl# 2Q Dg0G˄eVͮwO q3#(i+_1.1`VnƯȈVfR0QZ`Xz,(ks*QFe#GW˙Ii {QO)_IփfQaOT'oY>`+x ^EAfjB?,siswN2b^D+zMC=ESww¹B0~$O.L!.QVUPcqE ڈBtbr7<0X@^Ak q)7uWC5Fn=j6s2ͅkjuo-YW9`EXt)Z4E4کjNAC̨ډHިLIX7Fg˰Z%" /G6[\lTUL}G&$)Q/K{?<> %O;h%?l؟U|ٮ/J1!1E(+P ()!)~©r&oqm%41F9d(@F^"aE%䔸O)}[d$a Q6>o9A#:\,;΂}`g78>})mz(I6QKj8\I7dֹ3;8Nn2a坟-YrAc} .}; R'`7tx&HT*\.oAlp;WzmK0^;Ry(NL&CR8P͡s.;l L G>C +ywvޗ+Ք0uϿ-J̓Y,p:fbk! jyNK; 6{(E07fvlGzw̅"0-6)8uxUCmjg|Hy]~"Mt8edqw@,8ڱ#.W\l֜@)K}/Qx'txwCT[)<; QLWFQQ4N(7=ޡ T}(<ͺ}v])| \ײJ["8,j,jR!o"|O8oF=9NQE1JeDT׽8[4ao`=s{4@βߐ├e+#&ȭQw%f.eCX,Po|ذՒƲZ62?L:I?LęV'+d 38ށz=qd\trLѠo{nAzLv2 $d3dqD?YxŭxR kA-Y،ܲiM ]X<m"n^7_ځwh>yB"t KvK*UțߪE:إ#IޑX&V,G3y +qt#\tR9m^Sk4(:\ SL4r>Cp1Ġe>8耱K/|No2W񊞵TI/L?2!D;}hkbMaO;C׉·SA\yҀ1uǖ1/MzH-j׊SW`_إ^tdR"0:0LK~tB56)}.M19&*qIѓ"#R8~i~.N|&l'(L8;["~_&b^6ViNϙh6;*Ȣ2"D:2y?^wRW.WA<²nj甖g61X \g',ϭzG@%ØANPv^_Lc Sj1CxQs.4 H7b\VsA-dHlGۀrfi\Βfp;OY:P {W\mǢQ B5Pi/ZrsyD͢s0/ GB!&xCJW%.kjtf*iC1*ow&ufֺ:eI*=6ϱu}AzH)PWvpW}$rD⠺yEk7PU1'ff8ZsON-fDtTȠ*8{NL"!Տc .诗َ9̸<湴G|@#CcehUp5On:̎DQKzG{ۼEsg!MPAT+6-\`VcXm =ˠB>tŠ7~Kkg٘5mdicє&"EL$ o47d×+9c5KLRs]Y7+!^eLw.+`ZXf zY2?+EeEɔxPqQ_p0MI;]SM-ŴwehWF;vP X>6Ϊk#,G= &n'r׻&)M<ԑ;lzh,t{Y#wGvר7sd('Un/)uΕYb.wKԘz1hѝ ~_e[*'Wskt\[6|Wk8.5[l ! Q'&yr6K e080f!ƽ0i<äm3ʶU𙰊583sc=>׻U`,/N cniof*ozsE<\`˟U6iz{ xoC,J Qy: bF饗A_=e' #>ZLEZ<\4_*~+I b '#8˙jOZ!a5VRAi HX1t>ӸU5Sti/eSSdjTW)IBsːKO }{p.EW6IM{O+^yzhRa6Kݧj3O=Y~&d34[ukA WվrއQn3ʔތ!A=é;R 4 GX y@,RK0&mO̫0Mk-RQRg9#e6cޏJ>ſ]-fEy /ѷK{}o wy}Ru}϶V4Tun<թ]9|Ns}fgrL3|_puvv»B(A/\82hR뭒n{{"^ dL<6x>1ygYZ.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.data.bss.gnu_debuglink.gnu_debugdata 88$o``$( 0 08oEo@T@^BYY0 hppc p p0nPvPvt`` z    |990088@@ $  H(\